TEXT SEARCHABLE DOCUMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

Date: October 12, 2007

SUBJECT:

Mycobutanil. Ecological Risk Assessment on New Uses for Tropical Fruit,

Pamela MHurly Jamy K Wolf

Coller M. Flat

Fruiting Vegetables and Artichokes

PC Code: 128857

CAS Registry Number: 88671-89-0

DP Barcode: 336613

FROM:

Pamela Hurley, Toxicologist

James Wolf, Environmental Scientist

Environmental Risk Branch III

Environmental Fate and Effects Division (7507P)

Office of Pesticide Programs

FOR:

THROUGH: Karen Whitby, Branch Chief

Environmental Risk Branch III

Environmental Fate and Effects Division (7507P)

Office of Pesticide Programs

TO:

Barbara Madden/Daniel Rosenblatt RM 05

RIMUERB

Lisa Jones/Mary Waller RM 21

Fungicide Branch

Registration Division (7505P) Office of Pesticide Programs

This memorandum transmits the Environmental Fate and Effects Division's (EFED) environmental risk assessment for the proposed new uses for myclobutanil on fruiting vegetables (crop group 8, except tomatoes), leafy vegetables (crop subgroup 4A except spinach), artichokes and tropical fruits. The proposed application rates, number of applications and application intervals range from 0.10 to 0.25 lb a.i./A, 4 to 8 per season and 10 to 14 days, respectively. The maximum application rate and number of applications is proposed for the tropical fruit use. It is proposed that the fungicide can be applied by ground and aerial spray and with irrigation (chemigation).

The results of this screening-level assessment indicate a potential for direct adverse effects to non-target freshwater fish, marine/estuarine invertebrates, birds (reptiles and terrestrial-phase amphibians) and mammals following acute exposure and for direct adverse effects to birds and mammals following chronic exposure for selected proposed uses. Due to the potential for direct adverse effects to animal species associated with the application of myclobutanil on the

2068728

proposed use sites, indirect effects may also result as a consequence of the potential direct effects on the taxonomic groups listed above. More detailed risk conclusions are provided in the executive summary of the environmental risk assessment document. These conclusions are different from the most recent risk assessment provided by EFED on myclobutanil (new uses on hops and soybeans from J. Goodyear to M. Waller (12/18/2006, D323805)), but not from risk assessments prior to that time (i.e., new uses on tomatoes and cucurbits; expanded uses on pome fruits and IR-4 uses (asparagus, caneberry, currants, gooseberries, mint, snap beans, and strawberries); memorandum from Thuy Nguyen to Mary Waller (2/7/2000 D260111)). The current assessment utilizes the latest versions of exposure modeling for both aquatic and terrestrial exposure.

Labeling Issues

Label Uncertainty

The labels do not define whether or not "per season" means that only one crop may be grown from a given field in a year (or more than 1 crop cycle per year is possible which infers multiple seasons or crops per year). According to IR-4 sources, as many as three crops of lettuce may be grown from the same ground per year in Florida (communication from B. Madden, 08-24-07). The remaining uses assume only 1 season per year.

Two sets of draft labels were submitted to EFED. The first set of labels for RALLY® 40 WSP has geographic use restrictions, the second set does not. The labels for NOVA® 40 W also had geographic restrictions (precluded use in AK, AZ, CA, HI, ID, MT, NV, OR, UT, WA, and WY). The geographic restrictions on the NOVA® 40 W and RALLY® 40 WSP labels does not appear to agree with the proposed new uses. The draft Rally 40 WSP labels restricts its use to AK, ID, MT, NV,OR, UT, WA, and WY and the Nova 40 W label precludes its use in 11 states, including AZ, CA, and HA, yet the proposed new use is tropical fruit. The confusion in the labels should be addressed.

Suggestions for Hazard Labeling

Environmental Hazards

Manufacturing Use:

This pesticide is toxic to freshwater fish and marine/estuarine invertebrates. Do not discharge effluent containing this product into lakes, streams, ponds, estuaries, oceans or other waters unless in accordance with the requirements of a National Pollutant Discharge Elimination System (NPDES) permit and the permitting authority has been notified in writing prior to discharge. Do not discharge effluent containing this product to sewer systems without previously notifying the local sewage treatment plant authority. For guidance contact your State Water Board or Regional Office of the EPA. Do not contaminate water when disposing of equipment washwaters.

End Use Products:

This pesticide is toxic to freshwater fish and marine/estuarine invertebrates, birds and mammals. Do not apply directly to water, to areas where surface water is present, or to intertidal areas below the mean high water mark. Drift and runoff may be hazardous to aquatic organisms in water adjacent to treated areas. Do not contaminate water when disposing of equipment wash waters or rinsate.

Surface Water Label Advisories:

Myclobutanil and the degradate 1,2,4-triazole may contaminate water through drift of spray in wind. This product has a high potential for runoff for several months or more after application. Poorly draining soils and soils with shallow water tables are more prone to produce runoff that contains this product. Avoid applying this product to ditches, swales, and drainage ways. Runoff of this product will be reduced by avoiding applications when rainfall is forecasted to occur within 48 hours.

Ground Water Advisory:

Myclobutanil and the degradate 1,2,4-triazole has properties and characteristics associated with chemicals detected in ground water and detections are reported in ground water in ground water monitoring data in the publicly available literature. The use of this chemical in areas where soils are permeable, particularly where the water table is shallow, may result in ground-water contamination.

Data Gaps

Table 1 summarizes the data gaps in this assessment and the value of additional testing.

Table 1. Summary of Data Gaps and Value of Additional Ecotoxicity and Fate Testing for Myclobutanil			
Selected Uncertainty	Value of Additional Testing	Comment	
	Aquatic Assessment		
Acceptable freshwater invertebrate life cycle	Low	A chronic study on freshwater invertebrates is not required if a	
Acceptable estuarine/marine invertebrate life cycle	High	chronic study on estuarine/marine invertebrates is conducted. A chronic study on estuarine/marine invertebrates is needed because myclobutanil is highly acutely toxic to these organisms and because it is expected to be used around estuarine/marine environments. A	
Acceptable estuarine/marine fish life cycle	Low		

Table 1. Summary of Data Gaps and Value of Additional Ecotoxicity and Fate Testing for Myclobutanil		
Selected Uncertainty	Value of Additional Testing	Comment
		chronic study on estuarine/marine fish is not required because sufficient data are available on fish such that an extrapolation of the chronic endpoint may be used.
Aquatic plant algae	Low	One study is available on aquatic
Aquatic plant acute EC ₅₀	Low	non-vascular plants which indicates that myclobutanil is probably not toxic to this taxon. No data are available for aquatic vascular plants. Although incident data for terrestrial plants indicate that myclobutanil may damage terrestrial plants, the labels permit use around agricultural crops. Any damage to crops naturally limit the use.
Anaerobic Aquatic Metabolism	High	Myclobutanil is expected to reach surface water and has demonstrated toxicity to aquatic organisms; therefore, data are needed to get a better estimate of persistence in water.
Aerobic Aquatic Metabolism	High	Myclobutanil is expected to reach surface water and has demonstrated toxicity to aquatic organisms; therefore, data are needed to get a better estimate of persistence in water.
	Terrestrial Assessment	
Avian reproduction	Low	Although the highest concentration tested was lower than normally seen in acceptable studies, the terrestrial EECs are sufficiently low for these uses such that new studies are not needed at this time.
Seedling Emergence	Low	Incident data indicate potential
Vegetative Vigor	Low	damage to terrestrial plants. The fact that myclobutanil is labeled for use around agricultural crops indicates that toxicity to plants may not be sufficiently high to warrant requesting laboratory data.
Acute honey bee contact LD ₅₀ Acute honey bee 5-day oral LD ₅₀	Low	In light of current decreasing trends in honeybee populations, it would be
Honey Bee Residue on Foliage	Low	appropriate to ask for new studies; however, available supplemental data indicates that myclobutanil may not be toxic to honeybees.

Uncertainties

The aerobic and anaerobic aquatic metabolism study requirements have not been met. Therefore, the Agency assumes that the residues of concern are persistent for the exposure assessment. This uncertainty may be met by submission of aerobic and anaerobic aquatic metabolism studies. Only one chronic study is available for aquatic animals (freshwater fish). The chronic toxicity value for marine/estuarine fish was estimated using an acute to chronic ratio with acute studies with freshwater and marine/estuarine fish and a chronic study with freshwater fish. Therefore, there is uncertainty associated with the chronic toxicity value for marine/estuarine fish. This uncertainty may be met by submission of a chronic study in marine/estuarine fish; however, this study is not required at this time (see above table). A quantitative assessment of risk following chronic exposure was not possible for aquatic invertebrates because no chronic studies are available for either freshwater or marine/estuarine invertebrates. Myclobutanil is highly acutely toxic to these marine/estuarine invertebrates. The uncertainty associated with the risk to estuarine/marine invertebrates and freshwater invertebrates following chronic exposure may be met by submission of a chronic study with estuarine/marine invertebrates. A chronic study with estuarine/marine invertebrates may be used in an acute to chronic ratio with freshwater invertebrates to estimate chronic risk to freshwater invertebrates. Very little plant data are available. Data are only available for aquatic nonvascular plants. No plant studies are requested for myclobutanil. Although incident data indicate potential damage to terrestrial plants, it is not toxic to aquatic non-vascular plants and it is already registered for use around agricultural crops, indicating that toxicity to plants may not be sufficiently high to indicate a concern.

ECOLOGICAL RISK ASSESSMENT

Section 3 (New Uses on Selected Crops)

MYCLOBUTANIL

(PC Code 128857, CASN 88671-89-0)

IUPAC Name: 2-*p*-chlorophenyl-2-(1*H*-1,2,4-triazol-1-ylmethyl)hexanenitrile; 2-(4-chlorophenyl)-2-(1*H*-1,2,4-triazol-1-ylmethyl)hexanenitrile

<u>CAS Name</u>: alpha-butyl-alpha-(4-chlorophenyl)-1*H*-1,2,4-triazole-1-propanenitrile <u>Chemical Abstracts Registry Number</u>: 88671-89-0

<u>USEPA PC Code #</u>: 128857

Environmental Fate and Effects Division Team Members:

James Wolf, Environmental Scientist Pamela Hurley, Toxicologist James Hetrick, Senior Fate Scientist

Secondary Reviewers:

Stephanie Syslo, Environmental Scientist

Branch Chief: Karen Whitby Date: October 12, 2007

I. EXECUTIVE SUMMARY	4
A. NATURE OF CHEMICAL STRESSOR	4
B. POTENTIAL RISKS TO NON-TARGET ORGANISMS	5
C. CONCLUSIONS - ENVIRONMENTAL FATE AND TRANSPORT CHARACTERIZATION	7
D. CONCLUSIONS - EFFECTS CHARACTERIZATION	8
E. UNCERTAINTIES AND DATA GAPS	9
II. PROBLEM FORMULATION	11
A. NATURE OF REGULATORY ACTION	11
B. STRESSOR SOURCE AND DISTRIBUTION	11
1. Nature of the Chemical Stressor	11
2. Overview of Pesticide Usage	11
C. RECEPTORS	12
1. Aquatic and Terrestrial Effects	12
2. Ecosystems Potentially at Risk	. 13
D. ASSESSMENT ENDPOINTS	13
E. CONCEPTUAL MODEL	14
1. Risk Hypothesis	14
2. Conceptual Model	14
F. ANALYSIS PLAN	17
1. Conclusions from Previous Risk Assessments	17
2. Preliminary Identification of Data Gaps and Analysis Plan	17
3. Measures of Exposure and Effects	17
a. Aquatic Exposure Models	18
b. Terrestrial Exposure Models	19
III. ANALYSIS	21
A. USE CHARACTERIZATION	21
B. EXPOSURE CHARACTERIZATION	23
1. Environmental Fate and Transport Characterization	23
2. Measures of Aquatic Exposure	25
a. Aquatic Exposure Modeling	25
b. Aquatic Exposure Monitoring and Field Data	30
3. Measures of Terrestrial Exposure	<i>33</i>
a. Terrestrial Exposure Modeling	33
b. Residue Studies	35
C. ECOLOGICAL EFFECTS CHARACTERIZATION	-35
1. Aquatic Effects Characterization	35
a. Aquatic Animals	35
(1) Acute Effects	35 38
(2) Chronic Effects (3) Field Studies	39
b. Aquatic Plants	39
2. Terrestrial Effects Characterization	39
a. Terrestrial Animals	39
(1) Acute Effects	39
(2) Chronic Effects	42
(3) Field Studies	43
b. Terrestrial Plants	44
IV. RISK CHARACTERIZATION	. 44
A. RISK ESTIMATION - INTEGRATION OF EXPOSURE AND EFFECTS DATA	44
1. Risk to Aquatic Animals and Plants	44
a. Aquatic Animals	. 44
(1) Risk Following Acute Exposure	44

(2) Risk Following Chronic Exposure	48
b. Aquatic Plants	49
2. Risk to Terrestrial Animals and Plants	50
a. Terrestrial Animals	50
(1) Risk Following Acute Exposure	51
(2) Risk Following Chronic Exposure	54
b. Terrestrial Plants	56
B. RISK DESCRIPTION	56
1. Risk to Aquatic Animals and Plants	57
a. Aquatic Animals	57
(1) Risk Following Acute Exposure	57
(2) Risk Following Chronic Exposure	58
b. Aquatic Plants	58
2. Risk to Terrestrial Animals and Plants	59
	59
a. Terrestrial Animals	
(1) Risk Following Acute Exposure	59
(2) Risk Following Chronic Exposure	61
b. Terrestrial Plants	63
3. Review of Incident Data	63
a. Incidents Involving Aquatic Organisms	64
b. Incidents Involving Terrestrial Organisms	64
(1) Animals	64
(2) Plants	64
4. Endocrine Effects	64
5. Federally Threatened and Endangered (Listed) Species Concerns	65
a. Action Area	66
b. Taxonomic Groups Potentially at Risk	67
(1) Discussion of Risk Quotients	68
(2) Probit Dose Response Relationship	68
(3) Data Related to Under-represented Taxa	70
(4) Implications of Sublethal Effects	70
c. Indirect Effects Analysis	72
d. Critical Habitat	74
e. Co-occurrence Analysis	75
C. DESCRIPTION OF ASSUMPTIONS, LIMITATIONS, UNCERTAINTIES, STRENGTHS AND DATA GAPS	78
1. Assumptions, Limitations, and Uncertainties Related to Exposure For All Taxa	<i>78</i>
Maximum Use Scenario	78
2. Assumptions, Limitations and Uncertainties Related to Exposure For Aquatic Species	78
Aquatic Exposure Model	78
3. Assumptions, Limitations and Uncertainties Related to Exposure for Terrestrial Species	79
a. Location of Wildlife Species	79
b. Routes of Exposure	79
c. Dietary Intake and Other Limitations of Oral Studies in Terrestrial Species	81
d. Incidental Releases Associated With Use	83
e. Residue Levels Selection	83
f. Terrestrial Exposure Model	83
4. Assumptions, Limitations and Uncertainties Related to Effects Assessment	84
	84
a. Data Gaps	
b. Sublethal Effects	85 85
c. Age Class and Sensitivity of Effects Thresholds	85 85
d. Use of Most Sensitive Species Tested	85
5. Assumptions, Limitations, Uncertainties, Strengths and Data Gaps Related to the Acute an	
Chronic LOC's	86
V. LITERATURE CITED	86
VI. APPENDICES	88

I. EXECUTIVE SUMMARY

A. Nature of Chemical Stressor

New uses have been requested for the systemic fungicide, myclobutanil to control powdery mildew on fruiting vegetables (crop group 8, except tomatoes), leafy vegetables (crop subgroup 4A except spinach) and artichokes, and for disease control in tropical fruits. Myclobutanil (alpha-butyl-alpha (4-chlorophenyl)-1H-1,2-triazole-1-propanenitrile) is a triazole fungicide in the conazole class of fungicides (Figure 1). Myclobutanil appears to be a specific inhibitor of sterol 14-demethylase, which disrupts the ergosterol biosynthesis pathway which is vital to fungal cell wall formation. Thus, it is classified as a demethylation inhibitor (DMI) fungicide.

The proposed application rates range from 0.10 to 0.25 lb a.i./A. The number of applications range from 4 to 8; the minimum reapplication interval ranges from 10 to 14 days. The maximum proposed rate is for tropical fruit is 0.25 lb a.i./A per application with a maximum seasonal application rate of 2.0 lb a.i./A with a minimum reapplication interval of 14 days. The maximum application rate and number of applications is proposed for the tropical fruit use. It is proposed that the fungicide can be applied by ground and aerial spray and with irrigation (chemigation). A national assessment was considered.

Figure 1. Chemical Structure of Myclobutanil Active Ingredient

B. Potential Risks to Non-target Organisms

The results of this screening-level assessment indicate a potential for direct adverse effects to non-target freshwater fish, marine/estuarine invertebrates, birds (reptiles and terrestrial-phase amphibians) and mammals following acute exposure and for direct adverse effects to birds and mammals following chronic exposure for selected proposed uses (**Tables 1 and 2**). Due to the potential for direct adverse effects to animal species associated with the application of myclobutanil on the proposed use sites, indirect effects may also result as a consequence of the potential direct effects on the taxonomic groups listed above.

Table 1. Summary of Environmental Risk Conclusions for Aquatic Animals and Plants		
Taxonomie Group	Risk Endpoint	Summarized Risk Characterization and Important Uncertainties
Freshwater Fish	Acute Risk	Acute LOC for listed fish exceeded for one scenario for tropical fruit.
and Aquatic Phase Amphibians Chronic Risk		None of the RQs exceed the chronic LOC for freshwater fish for any of the proposed uses. Risk to freshwater fish following chronic exposure is not expected.
Freshwater	Acute Risk	None of the RQs exceed the acute LOC for freshwater invertebrates for any of the proposed uses. Risk to freshwater invertebrates following acute exposure is not expected.
Invertebrates	Chronic Risk	No chronic data are available. Therefore, risks were not estimated. Lack of data does not preclude potential risk to freshwater invertebrates following chronic exposure.
	Acute Risk	None of the RQs exceed the acute LOC for marine/estuarine fish for any of the proposed uses. Risk to marine/estuarine fish following acute exposure is not expected.
Marine/ Estuarine Fish	Chronic Risk	No chronic data are available. Using an acute to chronic ratio with freshwater fish acute and chronic data and marine/estuarine fish acute data, a chronic toxicity value for estuarine/marine fish was estimated. Utilizing estimated chronic endpoint for marine/estuarine fish, none of the RQs exceed the chronic LOC for estuarine/marine fish for any of the proposed uses. Risk to estuarine/marine fish following chronic exposure is not expected. There is uncertainty in endpoint because it was extrapolated using a comparison to freshwater endpoints.
Marine/ Estuarine Invertebrates	Acute Risk	For mollusks, estimated RQs exceed the acute LOC for listed marine/estuarine invertebrates with proposed uses on tropical fruit and lettuce with either aerial or ground applications. For crustaceans, the acute LOC for listed marine/estuarine invertebrates is exceeded for all proposed uses with either aerial or ground applications.
invertebrates	Chronic Risk	No chronic data are available. Therefore, risks were not estimated. Lack of data does not preclude potential risk to estuarine/marine invertebrates following chronic exposure, especially due to expected acute risks.
Aquatic Plants	Acute Risk	LOC for aquatic non-vascular plants not exceeded for any proposed uses. There is uncertainty in risk to non-vascular plants because data are only available on one species of non-vascular plant. No

Table 1. Summa	ry of Environmen	ntal Risk Conclusions for Aquatic Animals and Plants
Taxonomic Group	Risk Endpoint	Summarized Risk Characterization and Important Uncertainties
		data are available on aquatic vascular plants. Lack of data does not
		preclude potential risk to aquatic vascular plants.

Table 2. Summary of Environmental Risk Conclusions for Terrestrial Animals and Plants		
Taxonomic Group	Risk Endpoint	Summarized Risk Characterization and Important Uncertainties
Birds, Reptiles and Terrestrial Phase Amphibians	Acute Risk	Acute LOC for listed birds is exceeded for proposed tropical fruit, fruiting vegetables and other crops with same application rates and artichoke uses with several food categories (dose-based).
	Chronic Risk	Using the terrestrial EECs for the parent myclobutanil, none of the RQs exceed the chronic LOC for birds for any of the proposed uses. Risk to birds following chronic exposure not expected. With estimated maximum combined residues from the parent and the 1,2,4-triazole degradate, the RQ exceeds the chronic LOC for birds with the tropical fruit use (short grass only).
	Acute Risk	Acute LOC for listed mammals exceeded for proposed tropical fruit uses with mammals eating short grass but with no other uses or food categories.
Mammals	Chronic Risk	Chronic LOC for mammals on a dietary basis is exceeded for the proposed tropical fruit uses for mammals eating short grass. Chronic LOC for mammals on a dose basis is exceeded for all weight classes for all uses for mammals eating short grass. Tropical fruit use: exceeded for all weight classes for tall grass, broadleaf plants and small insects. All other uses: exceeded for tall grass (15 g mammals) and for broadleaf plants and small insects (15 and 35 g mammals.
·		With estimated maximum combined residues from the parent and the 1,2,4-triazole degradate the following additional dose-based RQs exceed the chronic LOC for mammals: leafy greens (10- day application interval, broadleaf plants and small insects, 1000 g mammals); fruiting vegetables (10- and 14-day application intervals) and artichoke uses (tall grass, 35 g mammals).
Non-target Invertebrates	Acute Risk	Quantitation of risk not officially incorporated at this time. Supplemental data on honey bees indicates that risk to terrestrial invertebrates may be low; however, data are not sufficient. Therefore, there is uncertainty associated with the risk to terrestrial invertebrates.
Terrestrial Plants	Acute Risk	No terrestrial plant data are available. Therefore, risks were not estimated. In light of incidence reports with damage to plants, (classified as possibly related to exposure to myclobutanil), lack of data does not preclude potential risk to terrestrial plants following exposure.

Table 3 summarizes the listed species at risk associated with either direct or indirect effects following application of myclobutanil.

Concerns For Federally Listed as Endangered and/or Threatened Species

Table 3. Listed Species Risks Associatuse.	ted With Direct or Indirect	Effects from Myclobutani
Listed Taxon	Direct Effects	Indirect Effects
Terrestrial and semi-aquatic plants - monocots	No data are available	Yes through effects to pollinators (mammals, birds, reptiles, terrestrial-phase amphibians)
Terrestrial and semi-aquatic plants – dicots	No data are available	Yes through effects to pollinator (mammals, birds, reptiles, terrestrial-phase amphibians)
Terrestrial invertebrates	No	No
Birds	Yes	Yes through effects to mammals freshwater fish, birds and estuarine/marine invertebrates
Terrestrial-phase amphibians	Yes ¹	Yes through effects to mammals, freshwater fish, birds and estuarine/marine invertebrates
Reptiles	Yes ¹	Yes through effects to mammals, freshwater fish, birds and estuarine/marine invertebrates
Mammals	Yes following acute and chronic exposure	Yes through effects to mammals, freshwater fish, birds and estuarine/marine invertebrates
Aquatic non-vascular plants	No	No
Aquatic vascular plants	No data are available	No
Freshwater fish	Yes following acute exposure	Yes through effects to freshwater fish and aquatic amphibians
Aquatic-phase amphibians	No ²	Yes through effects to freshwater fish and aquatic amphibians
Freshwater invertebrates	No (no chronic data available)	Yes through effects to freshwater fish and aquatic amphibians
Mollusks	No (no chronic data available)	Yes through effects to freshwater fish and aquatic amphibians
Marine/estuarine fish	No (extrapolated chronic value from freshwater fish)	Yes through effects to marine/estuarine invertebrates
Marine/estuarine invertebrates	Yes following acute exposure (no chronic data available)	Yes through effects to marine/estuarine invertebrates

Results from avian species used as surrogate for assessing risk to terrestrial-phase amphibians and

C. Conclusions - Environmental Fate and Transport Characterization

Based on a sparse data set, myclobutanil is expected to be persistent and mobile with primary routes of dissipation through leaching, runoff, and spray drift. It is stable to

reptiles.
² Results from freshwater fish used as surrogate for assessing risk to aquatic-phase amphibians

hydrolysis and to photolysis. Myclobutanil degradation is controlled by microbial-mediated transformations. Myclobutanil is moderately persistent to persistent in aerobic soils and persistent in anaerobic soils. The major degradation products observed in the aerobic soil metabolism studies were 1,2,4-triazole, CO_2 , a polar degradate (β -4-chlorophenyl- β -cyano- γ -(1H-1,2,4-triazole)-butyric acid) and unextractable residues. Degradation does not appear to follow first order kinetics based upon visual inspection, but follows a hockey stick degradation pattern (a rapid initial decline followed by a slower decline); thus, the calculated first-order half-life does not accurately describe the decline of myclobutanil residues in intermediate time periods (it captures early and late behavior). The decline of the combined residues (myclobutanil plus 1,2,4-triazole) also follows the "hockey stick" pattern. Potential for accumulation in soil is possible due to the persistence, especially when there are multiple applications.

D. Conclusions - Effects Characterization

Myclobutanil is classified as moderately acutely toxic to freshwater and marine/estuarine fish and slightly toxic to freshwater invertebrates. It is highly toxic to estuarine/marine invertebrates. Chronic data on aquatic organisms are only available for freshwater fish. No data are available to aquatic vascular plants. Myclobutanil is classified as slightly acutely toxic to birds, both on a dose and dietary basis. No effects were observed in the avian reproduction studies; however, the highest concentration level tested was not a particularly high concentration level for this type of study. In mammals, myclobutanil is also classified as slightly toxic. Reproductive effects were observed in the mammalian reproduction study (increases in testicular, epididymal and prostatic atrophy, a slight increase in the number of stillborns and a decrease in pup body weight gain during lactation). Supplemental data on honey bees exposed to a myclobutanil dust indicate that it may not be toxic to terrestrial invertebrates. No data are available for terrestrial plants. Incident data indicate that myclobutanil may cause damage to terrestrial plants; however, it is labeled for use on multiple agricultural crops, indicating that toxicity to plants may not be sufficiently high to indicate a concern.

Acute mammalian toxicity data on myclobutanil formulations indicate that with one exception (the 60% formulation), the formulations are not more acute toxic than the technical grade parent. Available acute and reproduction studies on the degradate 1,2,4-triazole indicate that for mammals, the degradate is equally toxic as the parent.

E. Uncertainties and Data Gaps

Table 4 summarizes the data gaps in this assessment and the value of additional testing.

for Myclobutanil		
Selected Uncertainty	Value of Additional Testing	Comment
	Aquatic Assessment	
Acceptable freshwater invertebrate life cycle	Low	A chronic study on freshwater invertebrates is not required if a
Acceptable estuarine/marine invertebrate life cycle	High	chronic study on estuarine/marine invertebrates is conducted. A chronic study on estuarine/marine
Acceptable estuarine/marine fish life cycle	Low	invertebrates is needed because myclobutanil is highly acutely toxic to these organisms and because it is expected to be used around estuarine/marine environments. A chronic study on estuarine/marine fish is not required because sufficient data are available on fish such that an extrapolation of the chronic endpoint may be used.
Aquatic plant algae	Low	One study is available on aquatic
Aquatic plant acute EC ₅₀	Low	non-vascular plants which indicates that myclobutanil is probably not toxic to this taxon. No data are available for aquatic vascular plants. Although incident data for terrestrial plants indicate that myclobutanil may damage terrestrial plants, the labels permit use around agricultural crops. Any damage to crops naturally limit the use.
Anaerobic Aquatic Metabolism	High	Myclobutanil is expected to reach surface water and has demonstrated toxicity to aquatic organisms; therefore, data are needed to get a better estimate of persistence in water.
Aerobic Aquatic Metabolism	High	Myclobutanil is expected to reach surface water and has demonstrated toxicity to aquatic organisms; therefore, data are needed to get a better estimate of persistence in water.
	Terrestrial Assessment	
Avian reproduction	Low	Although the highest concentration tested was lower than normally seen

Table 4. Summary of Data Gaps and Value of Additional Ecotoxicity and Fate Testing for Myclobutanil		
Selected Uncertainty	Value of Additional Testing	Comment
		in acceptable studies, the terrestrial EECs are sufficiently low for these uses such that new studies are not needed at this time.
Seedling Emergence	Low	Incident data indicate potential
Vegetative Vigor	Low	damage to terrestrial plants. The fact that myclobutanil is labeled for use around agricultural crops indicates that toxicity to plants may not be sufficiently high to warrant requesting laboratory data.
Acute honey bee contact LD ₅₀ Acute honey bee 5-day oral LD ₅₀	Low	In light of current decreasing trends in honeybee populations, it would be appropriate to ask for new studies; however, available supplemental data indicates that myclobutanil may not be toxic to honeybees.
Honey Bee Residue on Foliage	Low	

The environmental fate data base is generally complete, although very limited. A larger data set would increase the confidence in the estimated exposure concentrations. Additionally, the soils (east coast soils) used for the sorption and metabolism studies did not include soils from California or Hawaii (volcanic) (major production areas for the proposed new uses). There is no aerobic aquatic and anaerobic aquatic metabolism data so it was estimated from the aerobic soil metabolism data. The degradation of myclobutanil does not appear to follow first-order kinetics, while the EFED exposure models assume first order kinetics. Several methods (linear regression and non-linear regression) were used to estimate a half-lives (or DT₅₀) for the input into the models. EFED selected the half-life(s) estimated by linear regression on the lognormal-transformed concentration data. The persistence observed in the aerobic soil metabolism and terrestrial dissipation studies indicate that the potential for carryover resulting in an accumulation of residues is possible under some conditions.

The GENEEC and PRZM and EXAMS models have limitations in their abilities to thoroughly account for spray drift, runoff, within-site variability, crop growth, soil water transport, and weather. These models also assume first order kinetics. Additionally, scenarios are not available for every proposed use or use area (i.e., HI), so surrogate scenarios must be used (LA and PR).

There no known targeted surface or ground water monitoring studies for myclobutanil, although, it has in been included in other monitoring studies (D336254).

The estimated environmental concentrations (EECs) for aquatic exposure were determined for myclobutanil alone and as combined residues of myclobutanil plus the 1,2,4-triazole degradation product. The assessment for combined residues assumed the

mobility of 1,2,4-triazole as it is slightly more mobile than myclobutanil. The combined residues provide an upper bound of exposure due the conservatism of the assumption concerning the degradation rates and mobility.

II. Problem Formulation

The purpose of this problem formulation is to provide the foundation for the ecological risk assessment being conducted for myclobutanil. As such, it articulates the purpose and objectives of the risk assessment, evaluates the nature of the problem, and provides a plan for analyzing the data and characterizing the risk (EPA, 1998).

A. Nature of Regulatory Action

The Environmental Fate and Effects Division (EFED) has prepared this ecological risk assessment to support new uses on fruiting vegetables (Crop Group 8), leafy vegetables (Crop Subgroup 4), and tropical fruits for the fungicide myclobutanil (Rally[®] 40WSP (No. 62719-410) and Nova[®] 40W (EPA Reg. 62719-411).

B. Stressor Source and Distribution

1. Nature of the Chemical Stressor

Myclobutanil is a triazole fungicide in the conazole class of fungicides which is a systemic fungicide used to control powdery mildew on a number of crops. Myclobutanil appears to be a specific inhibitor of sterol 14-demethylase, which disrupts the ergosterol biosynthesis pathway which is vital to fungal cell wall formation. It is classified as a demethylation inhibitor (DMI) fungicide.

The primary routes of dissipation of myclobutanil are through leaching, runoff, and spray drift. Myclobutanil degradation is controlled by microbial-mediated processes. Myclobutanil was moderately persistent to persistent (DT₅₀ > 70 days) in aerobic soils and persistent in anaerobic soils. The major degradation products observed in the aerobic soil metabolism (ASM) studies were 1,2,4-triazole (maximum 18%), CO₂, a polar degradate (β -4-chlorophenyl- β -cyano- γ -(1H-1,2,4-triazole)-butyric acid; maximum 9 %), and unextractable residues.

2. Overview of Pesticide Usage

Myclobutanil is proposed for use on fruiting vegetables, leafy vegetables, and tropical fruits crop groups. Two products containing myclobutanil as the active ingredient (a.i.) are considered in this assessment: RALLY[®] 40 WSP (Registration No. 41719-410) and NOVA[®] 40 W (Reg. No. 41719-411). NOVA and RALLY are formulated in water-soluble pouches. They can be applied by ground and aerial spray or by chemigation (i.e., irrigation) at rates ranging from 0.1 to 0.25 lb a.i./A per application. Where a single crop

is grown per year 4 to 8 applications will be made; leafy vegetables such as lettuce may have up to 3 crops per year with up to 4 applications per crop.

C. Receptors

1. Aquatic and Terrestrial Effects

The receptor is the biological entity that is exposed to the stressor (EPA, 1998). Based on the proposed uses for myclobutanil, it is expected that the aquatic and terrestrial receptors will include freshwater fish and invertebrates, marine/estuarine fish and invertebrates, aquatic plants, terrestrial plants, birds, mammals and terrestrial invertebrates.

Consistent with the process described in the Overview Document (EPA, 2004), this risk assessment uses a surrogate species approach in its evaluation of myclobutanil. Toxicological data generated from surrogate test species, which are intended to be representative of broad taxonomic groups, are used to extrapolate to potential effects on a variety of species (receptors) included under these taxonomic groupings.

Acute and chronic toxicity data from studies submitted by pesticide registrants are used to evaluate the potential direct effects of myclobutanil to the aquatic and terrestrial receptors identified in this section. This includes toxicity data on the technical grade active ingredient, the major degradate, and, when available, formulated products (e.g. "Six-Pack" studies).

Table 5 provides a summary of the taxonomic groups and the surrogate species tested to help understand potential acute ecological effects of pesticides to these non-target taxonomic groups. In addition, the table provides a preliminary overview of the potential acute toxicity of myclobutanil by providing the acute toxicity classifications.

Table 5. Test Species Evaluated for Assessing Potential Ecological Effects of Myclobutanil and the Associated Acute Toxicity Classification		
Taxonomic Group	Surrogate Species	Acute Toxicity Classification
Birds ¹	Mallard (Anas platyrhynchos) Bobwhite (Colinus virginianus)	Slightly toxic Slightly toxic
Mammals	Laboratory mouse (Mus musculus)	Parent: Slightly toxic 1,2,4-Triazole degradate: Practically nontoxic
Insects	Honey bee (Apis mellifera L.)	Insufficient data to classify
Freshwater fish ²	Bluegill sunfish (Lepomis macrochirus) Rainbow trout (Oncorhynchus mykiss)	Moderately toxic Moderately toxic
Freshwater invertebrates	Water flea (Daphnia magna)	Slightly toxic
Estuarine/marine fish	Sheepshead minnow (Cyprinodon variegatues)	Moderately toxic
Estuarine/marine	Mysid shrimp (Americamysis bahia)	Highly toxic

Table 5. Test Species Evaluated for Assessing Potential Ecological Effects of Myclobutanil and the Associated Acute Toxicity Classification		
Taxonomic Group Surrogate Species Acute Toxicity Classification		
invertebrates	Eastern oyster (Crassostrea virginica)	Highly toxic
Terrestrial plants ³	Monocots – most sensitive species Dicots – most sensitive species	No data
Aquatic plants and algae	Duckweed (Lemna gibba) Green algae (Selenastrum capricornutum)	Not applicable

¹ Birds represent surrogates for terrestrial-phase amphibians and reptiles.

Chronic toxicity data are available for myclobutanil on freshwater fish, birds and mammals. A LOAEC value was not reported for birds because no effects were observed at the highest concentration tested. Mortality was reported in the chronic fish study with total mortality at the highest concentration level. Chronic reproductive effects were reported in the mammalian study on the parent and in the mammalian study on the 1,2,4-triazole degradate. The triazole degradate is not more toxic than the parent following chronic exposure. No other chronic toxicity studies are available for the degradate.

2. Ecosystems Potentially at Risk

The ecosystems at risk are often extensive in scope, and as a result it may not be possible to identify specific ecosystems during the development of a baseline risk assessment. However, in general terms, terrestrial ecosystems potentially at risk could include the treated field and areas immediately adjacent to the treated field that may receive drift or runoff. Areas adjacent to the treated field could include cultivated fields, fencerows and hedgerows, meadows, fallow fields or grasslands, woodlands, riparian habitats and other uncultivated areas.

Aquatic ecosystems potentially at risk include water bodies adjacent to, or down stream from, the treated field and might include impounded bodies such as ponds, lakes and reservoirs, or flowing waterways such as streams or rivers. For uses in coastal areas, aquatic habitat also includes marine ecosystems, including estuaries.

D. Assessment Endpoints

Assessment endpoints represent the actual environmental value that is to be protected, defined by an ecological entity (species, community, or other entity) and its attribute or characteristics (EPA, 1998). For myclobutanil, the ecological entities may include the following: birds, mammals, freshwater fish and invertebrates, estuarine/marine fish and invertebrates, terrestrial plants, insects, and aquatic plants and algae. The attributes for each of these entities may include growth, reproduction, and survival. (See Table 6 in Section II.F.3.b of the Analysis Plan, for further discussion).

² Freshwater fish may be surrogates for aquatic-phase amphibians.

³ Four species of two families of monocots, of which one is corn; six species of at least four dicot families, of which one is soybeans.

E. Conceptual Model

A conceptual model provides a written description and visual representation of the predicted relationships between myclobutanil residues, potential routes of exposure, and the predicted effects for the assessment endpoint. A conceptual model consists of two major components: risk hypothesis and a conceptual diagram (EPA, 1998).

1. Risk Hypothesis

For a pesticide to pose an ecological risk, it must reach ecological non-target organisms (receptors) at biologically significant concentrations. An exposure pathway is the means by which a pesticide moves in the environment from the application site to non-target organisms. The evaluation of the ecological exposure pathways in this assessment includes an examination of the source and potential transport pathways for myclobutanil plus its degradation product of concern (1,2,4-triazole) and the determination of exposure routes of non-target species.

Myclobutanil, when used in accordance with the label, results in potential adverse effects upon the survival, growth, and reproduction of non-target terrestrial and aquatic organisms. Given the persistence of myclobutanil and 1,2,4-triazole, and their mobility, there is a likelihood of exposure to terrestrial and/or aquatic organisms.

2. Conceptual Model

The conceptual model is a graphic representation of the structure of the risk assessment. It specifies the stressor (myclobutanil), transport pathways, non-target organisms (receptors), and effects endpoints of potential concern. The conceptual model for both potential aquatic and terrestrial risk is shown in Figure 2. Exposure routes shown in dashed lines are not quantitatively considered because the resulting exposures are expected to be very low when compared to the major routes of exposure.

Exposure is expected to be dominated by direct deposition, runoff and spray drift. Myclobutanil is persistent and mobile and is expected to leach to groundwater which could, in turn, recharge surface waters. However, it is not considered a significant route of exposure when compared to the dominant exposure routes listed above. In addition, based on the vapor pressure, long-range transport is not considered a significant route of exposure. EFED does not currently have a means to estimate exposure from chemigation (irrigation). Direct exposure from chemigation would be expected not to exceed the exposure from the methods of application.

This screening-level assessment for spray applications of myclobutanil only considered dietary exposure. Other routes of exposure that were not considered in the assessment are incidental soil ingestion exposure, inhalation exposure, dermal exposure,

and drinking water exposure. These routes are not represented in the diagram. Further discussion of these routes can be found in the Assumptions, Limitations and Uncertainties Related to Exposure for Terrestrial Species section (IV.B.5.C.3).

Figure 2 Conceptual Diagram for Aquatic and Terrestrial Risk

F. Analysis Plan

1. Conclusions from Previous Risk Assessments

The most recent ecological risk assessment conducted on myclobutanil was for use on hops and soybeans (D323805, D329420; 12/18/2006 and 7/18/2006). In that assessment (only parent myclobutanil was considered), no LOCs were exceeded for terrestrial animals or plants. For the use on hops, acute LOCs were exceeded for marine/estuarine invertebrates (RQs were 0.05 (eastern oyster) and 0.14 (mysids): (0.25 lb a.i./A, maximum of 8 applications and 0.019 (eastern oyster) and 0.054 (mysids): 0.25 lb a.i./A, maximum of 4 applications). The soybean use did not exceed any LOCs.

2. Preliminary Identification of Data Gaps and Analysis Plan

The aerobic and anaerobic aquatic metabolism study requirements have not been met. Therefore, the Agency assumes that the residues of concern are persistent for the exposure assessment. Only one chronic study is available for aquatic animals (freshwater fish). The chronic toxicity value for marine/estuarine fish was estimated using an acute to chronic ratio with acute studies with freshwater and marine/estuarine fish and a chronic study with freshwater fish. Therefore, there is uncertainty associated with the chronic toxicity value for marine/estuarine fish. A quantitative assessment of risk following chronic exposure was not possible for aquatic invertebrates because no chronic studies are available for either freshwater or marine/estuarine invertebrates. Therefore, a new study is needed for estuarine/marine invertebrates because myclobutanil is so acutely toxic to these taxonomic groups. Very little plant data are available. Data are only available for aquatic non-vascular plants. No plant studies are requested for myclobutanil. Although incident data indicate potential damage to terrestrial plants, it is not toxic to aquatic non-vascular plants and it is already registered for use around agricultural crops, indicating that toxicity to plants may not be sufficiently high to indicate a concern.

3. Measures of Exposure and Effects

EFED uses a tiered system of pesticide exposure modeling to assess risk of a pesticide product to the environment. This tiered system is designed to minimize the amount of analysis which is required to register any given chemical. Each of the tiers is designed to screen out pesticides by requiring higher, more complex levels of investigation only for those that have not passed the next lower tier. Each tier screens out a percentage of pesticides from having to undergo a more rigorous review prior to registration or reregistration.

a. Aquatic Exposure Models

The GENEEC (<u>GEN</u>eric <u>E</u>stimated <u>E</u>nvironmental <u>C</u>oncentration) model (Version 2, 2007), was issued by the USEPA Office of Pesticide Programs (OPP) Environmental Fate and Effects Division (EFED) for use in Tier I, screening level pesticide aquatic ecological risk assessments.

GENEEC uses a the soil/water partition coefficient and degradation kinetic data to estimate runoff from a ten hectare field into a one hectare by two meter deep "standard" pond. It calculates acute as well as longer-term estimated environmental concentration (EEC) values. It considers reduction in dissolved pesticide concentration due to adsorption of pesticide to soil or sediment, incorporation, degradation in soil before wash-off to a water body, direct deposition of spray drift into the water body, and degradation of the pesticide within the water body. Tier I is used to screen chemicals to determine which ones potentially pose sufficient risk to warrant higher level modeling. Chemicals failing to pass this screen move on to the Tier II modeling.

GENEEC was designed to mimic a PRZM-EXAMS simulation, but is much simpler than the PRZM and EXAMS models in its treatment of hydrology. GENEEC is a single event model. It assumes one single large rainfall/runoff event occurs that removes a large quantity of pesticide from the field to the water all at one time. The linked PRZM and EXAMS models simulate the impact of daily weather on the treated agricultural field over a period of thirty years. During this time, pesticide is washed-off of the field into the water-body by twenty to forty rainfall/runoff events per year. Each new addition of pesticide to the water-body adds to the pesticide which has arrived earlier either through previous runoff events or through spray-drift and begins degrading on the day it reaches the water. Longer-term, multiple-day average concentration values are calculated based on the peak day value and subsequent values considering degradation processes.

Tier II estimated environmental concentrations (EECs) for myclobutanil were generated with standard crop [Table 9] scenarios using PRZM3 (version 3.12.2 compiled (05/11/05, Carsel, 1997) and EXAMS (version 2.98.04.06 compiled 04/24/05, Burns, 2002). PRZM simulates pesticide fate and transport as a result of leaching, direct spray drift, runoff and erosion from an agricultural field and EXAMS estimates environmental fate and transport of pesticides in surface water body (standard farm pond). The EECs assessment for surface water uses a single or multiple sites which typically represent a high-end exposure scenario from pesticide use on a particular crop or non-crop use site. PRZM and EXAMS were linked by the program (PE5, version 01 compiled 07/23/07).

Ground water concentrations were estimated using the Tier I screening model SCI-GROW (version 2.3, compile 08/08/03). Detailed description, documentation, and direct links for running these models can be found in: http://www.epa.gov/oppefed1/models/water/index.htm.

The standard farm pond scenario is used to estimate EECs for ecological exposure. The pond scenario, represents a 10-ha corn (all cropped) field that is adjacent to a one hectare by two meter deep farm pond, which has neither hydraulic inlets nor outlets (i.e., pesticide cannot leave

by outflow). Weather and agricultural practices are simulated for 30 years so that the 10-year exceedence probability (1-in-10 year) at the site can be estimated. The simulation was generated using 30 years of meteorological data, encompassing the years from 1961 to 1990. Guidance for using the standard farm pond is located at: http://www.epa.gov/pesticides/trac/science/.

No PCA adjustment is required for the standard pond scenario and SCI-GROW.

b. Terrestrial Exposure Models

The focus of terrestrial wildlife exposure estimates is for birds (also acting as surrogate for reptiles and terrestrial-phase amphibians) and mammals with an exposure route emphasis on uptake through the diet. The residues in or on potential dietary sources for mammals and birds (e.g., vegetation, insects, and seeds) were estimated using the Tier I model T-REX (Version 1.3.1, 2006). In this Tier I assessment, it was assumed that organisms are exposed to one active ingredient in a given exposure scenario. In all screening-level assessments, the organisms are assumed to consume 100% of their diet as one food type. The T-REX output is listed in Appendix G.

The approach used to estimate exposure of terrestrial animals to myclobutanil was based on potential foliar applications of myclobutanil. Upper-bound exposure levels were calculated for spray applications of myclobutanil using maximum proposed application rates for one application for the proposed uses. The exposure estimates are based on a database of pesticide residues on wildlife food sources associated with specified application rates (Kenaga, 1972; Fletcher *et al.*, 1994). Essentially, for a single application, there is a linear relationship between the amount of pesticide applied and the amount of pesticide residue present on a given food item. Food item residue levels are then linearly adjusted based on application rate. The upper-bound estimates are used to estimate risks since these values represent the high-end exposure that may be encountered for terrestrial species that consume food items that have received label-specified pesticide application. Although these represent higher-end estimates, they do not represent the highest possible exposure estimates.

T-REX is a simulation model that, in addition to incorporating the relationship between application rate and food item residue concentrations, accounts for pesticide degradation in the estimation of EECs. T-REX calculates pesticide residues on each type of food item on a daily interval for one year. A first-order decay function is used to calculate the residue concentration at each day based on the concentrations present from both initial and all subsequent applications. The decay rate is dependent on the foliar dissipation half-life. The food item concentration on any given day is the sum of all concentrations up to that day, taking into account the first-order degradation. The initial application occurs on day 0 (t=0) and the model runs for 365 days. Over the 365-day run, the highest residue concentration is the measure of exposure (EEC) used to calculate RQs.

The foliar dissipation half-life and residue decline studies can be important in estimating exposure because they essentially determine how long the pesticide remains in or on food items

after application. In many cases, neither empirically determined foliar dissipation nor residue decline half-life (with a day 0 residue) values are available, in which case the default value of 35 days is used (Willis and McDowell, 1987). For myclobutanil, the default foliar dissipation half-life was used. Multiple residue decline and foliar dissipation studies are available; however, it is unclear as to whether or not these studies provide sufficient data to provide a foliar half-life for use in the terrestrial exposure model, T-REX. Therefore, T-REX was modeled using a default half-life of 35 days and for risk description purposes, a half-life of 2 days.

Table 6 summarizes the measures of ecological effects and exposure used to assess ecological risk following exposure to myclobutanil with the proposed uses.

Table 6. Measures of Ecological Effects and Exposure for Myclobutanil						
Assess	ment Endpoint	Surrogate Species and Measures of Ecological Effect ^{1,2}	Measures of Exposure			
Birds ³	Survival	Bobwhite acute oral LD ₅₀ : 498 mg/kg bw Mallard subacute dietary LC ₅₀ : >4090 ppm				
	Reproduction and growth	Bobwhite reproduction NOAEC/LOAEC: 256/>256 ppm	Maximum residues on food			
Mammals	Survival	Laboratory mouse acute oral LD ₅₀ : 1360 mg/kg	items (foliar)			
	Reproduction and growth	Laboratory rat reproduction study NOAEC (NOAEL)/LOAEC (LOAEL): 200 ppm (16 mg/kg bw/day)/1000 ppm (80 mg/kg bw/day)				
Freshwater fish ⁴	Survival	Bluegill sunfish 96-hr LC ₅₀ : 2.4 mg/L	Peak EEC ⁵			
	Reproduction and growth	Fathead minnow chronic (early life stage) NOAEC/LOAEC: 0.98/2.2 mg/L	60-day average EEC ⁵			
Freshwater invertebrates	Survival	Water flea 48-hr EC ₅₀ : 11 mg/L	Peak EEC ⁵			
	Reproduction and growth	Water flea chronic (life cycle) NOAEC/LOAEC: (no study available)	21-day average EEC ⁵			
Estuarine/marine fish	Survival	Sheepshead minnow 96-hr LC ₅₀ : 4.7 mg/L	Peak EEC ⁵			
	Reproduction and growth	Sheepshead minnow chronic (early life stage) NOAEC/LOAEC: (no study available)	60-day average EEC⁵			
Estuarine/marine invertebrates	Survival	Eastern oyster 96-hr EC ₅₀ : 0.68 mg/L Mysid 96-hr EC ₅₀ : 0.24 mg/L	Peak EEC ⁵			

Page 20 of 88'

Table 6. Measures o	Table 6. Measures of Ecological Effects and Exposure for Myclobutanil					
Assessment Endpoint		Surrogate Species and Measures of Ecological Effect ^{1,2}	Measures of Exposure			
	Reproduction and growth	Mysid chronic NOAEC/LOAEC: (no study available)	21-day average EEC ⁵			
Terrestrial plants ⁶	Survival and growth	Monocot and dicot seedling emergence and vegetative vigor EC ₂₅ , EC ₀₅ and NOAEC values (no studies available)	Estimates of runoff and spray drift to non-target areas			
Insects	Survival (not quantitatively assessed)	Honey bee acute contact LD ₅₀ (no study available). Dust study: > 100 μg/bee	Maximum application rate			
Aquatic plants and algae	Survival and growth	Green algae 120-hr EC ₅₀ : 0.83 mg/L and NOAEC: 0.56 mg/L based on cell density. No study available for vascular plants	Peak EEC ⁵			

 $^{^{1}}$ LD₅₀ = Lethal dose to 50% of the test population; NOAEC = No observed adverse effect concentration; LOAEC = Lowest observed adverse effect concentration; LC₅₀ = Lethal concentration to 50% of the test population; EC₅₀/EC₂₅ = Effect concentration to 50%/25% of the test population.

Birds represent surrogates for amphibians (terrestrial phase) and reptiles.

⁵ One in 10-year return frequency.

III. Analysis

A. Use Characterization

The myclobutanil labels considered in this assessment include RALLY® 40 WSP (EPA Reg. No. 62719-410) and NOVA® 40 W and RALLY® 40 W (EPA Reg. No. 62719-411). Myclobutanil will be used to control powdery mildew on Fruiting Vegetables (Crop Group 8), leafy vegetables (Crop Subgroup 4A), artichokes, and disease in tropical fruits. The proposed methods of myclobutanil application are through ground and aerial spray as well as sprinkler irrigation (chemigation).

The rates proposed for each crop (crop group) are given in Table 7. The individual application rates range from 0.10 to 0.25 lb a.i./A. The number of applications range from 4 to 8; the minimum reapplication interval ranges from 10 to 14 days. The maximum proposed rate is for tropical fruit is 0.25 lb a.i./A per application with a maximum seasonal application rate of 2.0 lb a.i./A with a minimum reapplication interval of 14 days. The maximum application rate and number of applications is proposed for the tropical fruit use.

² If species listed in this table represent most commonly encountered species from registrant-submitted studies, risk assessment guidance indicates most sensitive species tested within taxonomic group are to be used for baseline risk assessments.

⁴ Freshwater fish may be surrogates for amphibians (aquatic phase).

⁶ Four species of two families of monocots - one is corn, six species of at least four dicot families, of which one is soybeans.

Table 7. Proposed new uses and use patterns of myclobutanil (PC 128857 D336613)							
Supplemental Product Label	Reg. No.	Use Restriction	New Use - Crop Groups, Crops	Max # Appl. /Interval	Rate/Season ¹ Rate		
			Petition 6E7138				
Rally 40 WSP	62719-410	None	Tropical fruits ²	8/14	0.25/2.0		
Rally 40 WSP 62719-410 None		None	Okra	4/10 to 14	0.125/0.50		
Rally 40 WSP			Crop Group 8 ³ ; Pepper, Eggplant	4/10 to 14	0.125/0.50		
Rally 40 WSP			Artichoke	6/14	0.10/0.60		
Rally 40 WSP 62719-410 None		None	Crop subgroup 4A ⁴ Head & Leaf lettuce; FL, - 3 crops/year ¹	4/14 3 ¹ x 4/14	0.125/0.50 0.125/1.50		
			Petition 3E6562				
Nova 40 W	62719-411	Not for use in ⁵	Okra	4/10 to 14	0.125/0.50		
Nova 40 W	62719-411	Not for use in ⁵	Crop Group 83; Pepper, Eggplant	4/10 to 14	0.125/0.50		
Rally 40 W [Product label]	62719-411	For use only in ⁶	Tropical fruits ²	8/14	0.25/2.0		

Number of seasons per year is not defined; as many as 3 crops from the same ground in Florida (communication B. Madden, 08-24-07).

Label Uncertainty

The labels do not define whether "per season" means that only one crop may be grown from a given field in a year (or more than 1 crop cycle per year is possible which infers multiple seasons or crops per year). According to IR-4 sources, as many as three crops of lettuce may be grown from the same ground per year in Florida (communication from B. Madden, 08-24-07). The remaining uses assume only 1 season per year.

Two sets of draft labels were submitted to EFED. The first set of labels for RALLY® 40 WSP has geographic use restrictions, the second set does not. The labels for NOVA® 40 W also had geographic restrictions (precluded use in AK, AZ, CA, HI, ID, MT, NV, OR, UT, WA, and WY). The geographic restrictions on the NOVA® 40 W and RALLY® 40 WSP labels does not appear to agree with the proposed new uses. The draft Rally 40 WSP labels restricts its use to AK, ID, MT, NV,OR, UT, WA, and WY and the Nova 40 W label precludes its use in 11 states,

² Tropical fruits; Black Sapote, Canistel, Mamey Sapote, Mango, Papaya Sapodilla, and Star Apple

³ Crop group 8 Fruiting vegetables – Peppers and Egg Plant [6E7138], except tomatoes; leafy vegetables

⁴ Crop subgroup 4A, Leafy vegetables. except tropical fruits, spinach; artichoke, cilantro, and okra. (Amaranch, Arugula, chervil, garland, chrysanthemum, corn salad, garden cress, upland crass, dandelion, dock, endive, lettuce, orach, parsley, garden purslane, and winter purslane, radicchio, and Cilantro).

⁵ Not for use in AK, AZ, CA, HI, ID, MT, NV, OR, UT, WA, WY

⁶ For use only in AK, ID, MT, NV, OR, UT, WA, WY (D336254).

including AZ, CA, and HA, yet the proposed new use is tropical fruit. The confusion in the labs should be addressed.

B. Exposure Characterization

1. Environmental Fate and Transport Characterization

Our understanding of the environmental fate and transport properties of myclobutanil is based on a sparse data set. Available environmental fate parameters, including the chemical structure of myclobutanil are listed in Table 8. These data are based on studies that may not be acceptable under current classification standards as they were conducted prior to 1986 before Good Laboratory Practice (GLP) standards (40 CFR 160) and data requirements for registration were promulgated in the Code of Federal Regulations (40 CFR 158). Therefore, the Agency assumes that the residues of concern are persistent (stable) in soil and water for the exposure assessment. The previously submitted studies have not been re-reviewed, although rate of degradation (decline) of myclobutanil in the aerobic soil metabolism study was re-estimated.

Due to its persistence and mobility, the primary routes of dissipation are through leaching, runoff, and spray drift. Myclobutanil is stable to hydrolysis and to photolysis. Myclobutanil degradation is controlled by microbial-mediated transformations. Myclobutanil was moderately persistent to persistent (DT₅₀> 70 days) in aerobic soils and persistent in anaerobic soils. The major degradation products observed in the aerobic soil metabolism (ASM) studies were 1,2,4-triazole (maximum 18%), CO₂, a polar degradate (β -4-chlorophenyl- β -cyano- γ -(1H-1,2,4-triazole)-butyric acid; maximum 9 %), and unextractable residues. At the conclusion of the 367 day ASM study, 29 to 33 percent of the applied radioactivity remained as parent myclobutanil and 13 percent was identified as 1,2,4-triazole.

Myclobutanil degradation in the ASM studies does not appear to follow first-order kinetics based upon visual inspection, but follows a "hockey stick" degradation pattern (a rapid initial decline followed by a slower decline), thus the first-order half-life does not accurately describe the decline of myclobutanil residues. The observed (visible inspection) aerobic metabolism DT₅₀ for myclobutanil value ranged between 75 and 90 days. The DT₉₀ for myclobutanil was not reached during the course of the study (367 days). Once the maximum level of 1,2,4-triazole is reached, its decline pattern parallels myclobutanil. The decline of the combined residues also followed the hockey stick pattern. Terrestrial field dissipation half-life values ranged from 92 to 292 days. Myclobutanil photo-degrades with a half-life of approximately 143 days on soil. Thus, myclobutanil residues are fairly persistent. The potential for accumulation in soil is possible due to the persistence, especially when there are multiple applications. Further discussion is provided in Section 2.a. Aquatic Exposure Modeling and Appendix B.

Myclobutanil is mobile as indicated by the Freundlich K_{ads} values (from 1.46 to 9.77 mL/g) (Appendix B, Table 3). The lowest non-sand value is 2.39 mL/g. Desorption coefficients were generally less than the sorption coefficients. The degradate (1,2,4-triaziole) has lower Freundlich K_{ads} values (0.234 to 0.833 mL/g), suggesting it would be more mobile than the parent compound (Appendix B, Table 4). The sorption is not strongly correlated to soil organic carbon (matter), thus Koc is not a good measure of mobility for modeling.

Because log K_{ow} s for parent and degradation products are low (log K_{ow} = 2.94), the myclobutanil residues are not expected to bioaccumulate (MRID # 00162541).

Parameter	Input Value and Unit Source			
Chemical Formula Myclobutanil: alpha-butyl-alpha (4-chlorophenyl)-	1H-1,2-triazole-1-propane-ni	trile		
Chemical Structure: Myclobutanil	CI CN N N			
Myclobutanil Molecular Weight	288.8 g/ mol	DP Barcode D289700 (6/25/03)		
Solubility in water (pH 7, 20°C)	142 mg/L	DP Barcode D289700 (6/25/03)		
161-1 Hydrolysis at pH 5,7, and 9	Stable	MRID 00141679		
161-2 Aqueous photolysis (t _{1/2})	Stable	MRID # 40641501, 40319801, 40528801		
161-3 Soil Photolysis	143 days	MRID # 00164988 (D197478)		
163-1 Partition Coefficient, K _{ads}	1.46, 2.39, 4.44, 7.08, 9.77 mL/g	MRID# 00141682		
162-1 Aerobic Soil Metabolism (T½) ^b	198, 224 days	MRID# 00164561		
162-3 Anaerobic Soil Metabolism	Assume Stable, No appreciable degradation in 62 days	DP Barcode D289700 (6/25/03)		
162-3 Anaerobic Aquatic Metabolism	No Data Submitted			
162-4 Aerobic Aquatic Metabolism	No Data Submitted			
164-1 Terrestrial field dissipation	92 to 292 days	MRID # 00164563		
Chemical Structure: Primary Degradation Product 1,2,4-Triazole	NH NH			
1,24-Triazole Molecular weight:	69.07	DP Barcode D289700 (6/25/03)		
163-1 Partition Coefficient, K _{ads} a 1,2,4 Triazole	0.234, 0.719, 0.722, 0.748, 0.833	MRID# 40891501		
162-1 Aerobic Soil Metabolism (T½) ^b	315 days	MRID# 00164561		

Page 24 of 88

Table 8. Selected Fate and Transport data for	myelobutanil and 1,2	,4-triazol.
Parameter	Input Value and Unit	Source
Myclobutanil plus 1,2,4 Triazole		

a Koc are presented in Appendix B, Tables 3 and 4.

2. Measures of Aquatic Exposure

a. Aquatic Exposure Modeling

Pesticide usage information was obtained from the draft labels. Tier I GENEEC2 modeling was conducted to provide national-scale screening concentrations for myclobutanil. Tier II PRZM/EXAMS modeling was conducted to provide regional-scale screening concentrations for specific crops. Because Tier II modeling scenarios for artichokes, okra, and tropical fruit are not available in the standard PRZM scenarios, surrogate scenarios were selected to represent these crops and their predominate productions areas in United States (Table 9)

Table 9. PRZM/EXAMS Surrogate Scenarios Used in the Aquatic Exposure Assessment				
Crop	Surrogate Scenario	Rationale for Surrogate Scenario		
Artichokes	CA row crop	Scenario used as surrogate in Red-Legged Frog Endangered Species Assessments		
,		CA accounts for all artichoke production (www.hort.purdue.edu/rhodcv/hort410/lettuc/le00005.htm)		
Okra	FL tomato CA tomato	Okra production is concentrated in TX, GA, FL, CA, TN, and AL (http://www.aces.edu/pubs/docs/A/ANR-0959/)		
Tropical Fruits	PR coffee FL avocado	Selected a range of scenarios to represent the region for tropical fruit production in the United States		
	LA sugarcane CA citrus			

Model input parameters were estimated from the fate and transport properties and the other default values were selected as recommended by EFED Input Guidance document (USEPA, 2002) (Table 10).

 $^{^{\}rm b}$ (T½) – Myclobutanil decline does not follow first-order kinetics, therefore the decay rate is not a half-life. Estimate of DT50 dependant upon method used to determine value.

Table 10. Input parameters for the Tier I GENEEC2 and Tier II PRZM/EXAMS models used in the Myclobutanil Aquatic Exposure Assessment					
Input	Value	Rationale			
Application rate/number/interval	0.25 lb a.i.A ⁻¹ /8/14 days	Maximum proposed label use			
Incorporation depth	0	USEPA, 2002			
Hydrolysis	0 (stable)	USEPA, 2002			
Aquatic Photodegradation	0 (stable)	USEPA, 2002			
Solubility	142.0 mg/L	USEPA, 2002			
Aerobic Soil Metabolism Myclobutanil Myclobutanil + 1,2,4-triazole Aerobic Aquatic Metabolism Myclobutanil Myclobutanil + 1,2,4-triazole	251 days 315 days Estimated as 502 days Estimated as 630 days	Upper 90 th bound on mean Only 1 value 2 x ASM per USEPA, 2002 2 x ASM per USEPA, 2002			
Anaerobic Aquatic Metabolism	Stable	Assumed stable to be conservative			
Mobility (Freundlich K _{ads}) Myclobutanil 1,2,4-triazole Aerial Spray Drift Ground Spray Drift	2.39 mL/g 0.719 mL/g 0.05 (fraction) 0.01 (fraction)	Lowest non-sand value Lowest non-sand value USEPA, 2002			

Tier I myclobutanil peak EECs range from 22.3 to 82.9 μ g/L (Table 11). The highest concentrations were associated with the tropical fruit use regardless of the range of available environmental fate data. This crop use allows a maximum application rate of 0.25 lb a.i./A with 8 application at 14 day intervals. As expected, chronic concentrations (i.e., 21-day average and 60 day-average) are comparable to the peak concentration because of the persistent nature of myclobutanil in aquatic and soil environments.

	Table 11. Myclobutanil EECs generated by GENEEC2 for different proposed use ates and assumption about environmental fate data used as model inputs.						
			Peak	21-day	60-day		
Crops	Rate/no./Invª.	Kads/ASM/AAQb		μg/L			
Tropical Fruit	0.25/8/14	2.4/251/0	82.9	82.3	81.0		
(Aerial Spray)	1	2.4/251/502	82.3	81.0	78.6		
Okra	0.125/4/10	2.4/251/0	22.4	22.2	21.8		
(Aerial Spray)		2.4/251/502	22.3	21.9	21.3		
Lettuce ^c	0.125/12/14	2.4/251/0	58.6	58.1	57.2		
(Aerial spray)	}	2.4/251/502	56.4	55.5	53.8		
Artichoke	0.10/6/14	2.4/251/0	25.6	25.4	25.0		
(Aerial Spray)		2.4/251/502	25.5	25.1	24.4		

^a Rate/no./Inv. = application rate lb ai/A; number applications per year; reapplication interval

Because the GENEEC2 EEC exceeded aquatic organism toxicity LOCs, Tier II PRZM EXAMS modeling was conducted to refine the exposure assessment for both myclobutanil and myclobutanil plus 1,2,4-triazole (combined residues). The combined residues would provide an upper bound exposure estimate because of the conservatism of the half-life and sorption (K_{ads}) selected for modeling. The influence the method of application (ground versus aerial spray) was also evaluated.

One in ten year Tier II myclobutanil peak EECs range from 3.4 to $183.9 \,\mu\text{g/L}$ and for myclobutanil plus 1,2,4-triazole range from 5.0 to 202.7 $\,\mu\text{g/L}$ (Table 12). The highest peak concentration (183.9 and 202.7 $\,\mu\text{g/L}$) is associated with the tropical fruit use in LA.

 $^{^{}b}$ K_{ads} Freundlich K_{ads} (mL/g), ASM = aerobic soil metabolism, AAQ = aerobic aquatic metabolism

^c Lettuce; three crops per season, 4 applications per crop for a total of 12 per year

Table 12: Myclobutanil and Myclobutanil + 1,2,4-triazole EECs from Tier II PRZM/EXAMS Simulations.							
Crops	Rate/No./Inv²	Rate /No./Inv ² Method		1 in 10 year EEC' (μg/L)			
			Peak	21 day Average	60 day Average		
CA-Artichoke	0.10/6/14	Aerial	18.2 [20.7]	18.1 [20.6]	18.0 [20.5]		
CA-7 ii denoke	0.10/0/14	Ground	12.5 [23/5]	12.4 [13.4]	12.3 [13.4]		
CA Lettuce	0.125/12/14	Aeria1	105.9 [117.0]	105.9 [116.9]	105.9 [116.0]		
CA Lettuce	0.123/12/14	Ground	95.8 [103.9]	95.5 [103.0]	95.1 [102.9]		
CA-Okra	0.125/4/10	Aerial	6.7 [8.6]	6.6 [8.5]	6.4 [8.3]		
CA-OMa		Ground	3.4 [5.0]	3.4 [4.9]	3.3 [4.9]		
FL-Okra		Aerial	19.7 [17.2]	19.5 [17.0]	19.2 [16.8]		
1 L-Okiu		Ground	17.6 [14.2]	17.3 [14.1]	17.0 [13.9]		
PR-Tropical		Aerial	99.1 [107.5]	97.9 [107.4]	96.5 [105.5]		
Fruit		Ground	95.1 [102.3]	93.9 [101.3]	91.9 [99.4]		
FL-Tropical		Aerial	20.4 [20.9]	20.0 [20.6]	19.8 [20.3]		
Fruit	0.25/8/14	Ground	10.5 [8.0]	10.4 [8.0]	10.2 [7.9]		
LA-Tropical	0.23/0/14	Aerial	183.9 [202.7]	181.0 [201.6]	179.8 [197.8]		
Fruit		Ground	178.7 [194.8]	175.9 [192.8]	174.6 [189.9]		
CA-Tropical		Aerial	22.42 [28.0]	22.2 [27.8]	22.0 [27.5]		
Fruit		Ground	10.3 [12.3]	10.3 [12.3]	10.1 [12.1]		

Myclobutanil [combine -Myclobutanil plus 1,2,4-triazole]

Rate lb a.i./A / number of applications / interval between applications in days

Additional inspection of the Tier II EECs indicates year-to-year accumulation of myclobutanil in the standard pond (Figure 3). This accumulation is not unexpected due to the persistence of myclobutanil in soil and water environments, and the lack of inflow and outflow in the standard pond that precludes decreases in concentrations of residues due to dilution.

Outputs from the scenarios modeled are included in Appendix C.

Figure 3: Accumulation of PRZM/EXAMS Annual Peak Concentrations of Myclobutanil in the Florida Tomato Scenario (surrogate for FL Okra ground spray use).

This apparent accumulation limits any probabilistic interpretation of the return frequency of concentrations. Therefore, the 1-in-10 year concentrations reported in the standard EFED ecological risk assessments are highly conservative because they represent accumulation over approximately 27 years. Modeling of accumulation curves was conducted to allow for estimation of concentrations during a 30 year time period. The modeling was conducted on annual peak concentrations from PRZM/EXAMS using Sigmaplot Regression Wizard. The model used was the exponential rise to maximum model ($y=a(1-e^{-b^2x})$) where y= annual peak concentration ($\mu g/L$), x= time (years), a= plateau concentration of accumulation, and b= annual rate of rise (year-1). Table 13 shows the model parameters resulting from for each PRZM/EXAMS simulation.

Table 13: Time (years) to reach plateau concentration in standard farm pond.					
Scenario	Application	Model Predic	Model Predicted Constants		
Beomarie	Method	A ^x	\mathbf{B}_{λ}	R ²	
FL Okra	Air	15.9224	0.4158	0.36	
FL Okta	Ground	13.5657	0.4128	0.28	
CA Olseo	Air	6.1507	0.3930	0.87	
CA Okra	Ground	2.7613	0.4002	0.55	
CA Lettree	Air	92.2632	0.2393	0.76	
CA Lettuce	Ground	81.2336	0.2454	0.69	
CA Articheles	Air	17.3965	0.2297	0.94	
CA Artichoke	Ground	11.4516	0.2403	0.87	
CA Transact Emit	Air	21.2216	0.4957	0.72	
CA Tropical Fruit	Ground	7.6581	0.7555	0.15	
El Tropical Emit	Air	17.5039	0.3531	0.38	
FL Tropical Fruit	Ground	7.2592	0.2057	0.10	
I A Transact Emit	Air	164.8421	0.2902	0.67	
LA Tropical Fruit	Ground	158.0310	0.2870	0.64	
DD Tropical Emit	Air	98.3949	0.0642	0.4915	
PR Tropical Fruit	Ground	142.1702	0.0295	0.5250	

^{*} Years to reach plateau concentration in standard farm pond.

b. Aquatic Exposure Monitoring and Field Data

Monitoring studies which included myclobutanil as an analyte were the USGS NAWQA; USDA, Pesticide Data Program (PDP); and the Reservoir Pilot Monitoring Program (USGS, 2001). The Pesticide Data Program (PDP) and Reservoir Pilot Monitoring Program (USGS, 2001) studies were located at drinking water treatment facilities. The monitoring studies were not specifically targeted to myclobutanil use areas.

USDA, Pesticide Data Program (PDP)

The PDP is a program implemented by the USDA in 1991 to test commodities in the U.S. food supply for pesticide residues (2001). Sampling of finished drinking water was not added until 2001. The PDP is a partner ship with cooperation State Agencies responsible for sample collection and analysis of fresh and processed fruit and vegetables, grain, grain products, milk and dairy products, beef, pork, drinking water, and bottle water. Ten to twelve states participate in PDP program. In 2005, the twelve states were CA, CO, FL, MD, MI, MN, MT, NY, OH, TX, WA, and WI.

Paired samples of raw (untreated) intake and disinfected finished (treated) water were collected for analysis by the PDP in 2004 and 2005. Treated water samples were collected after the untreated samples at a time interval consistent with the hydraulic residence time. The

^y Annual rate of rise (year⁻¹).

frequency of myclobutanil detections was 2 percent for the treated water and 1 percent for the untreated water (Table 14) in the 2005 samples. There were no detections in any of the other years. Triazoles and its conjugates were detected in several food commodities, but not in water samples in the PDP study.

Table 14. Distribution of myclobutanil and 1,2,4-triazole residues in drinking water in the USDA Pesticide Data Program (PDP) (USDA, 2001 - 2006).						
Myclobutanil	No. of Samples	No. of Detects (year)	% samples with detection	Range of Detections ¹ (µg/L)	Range of LODs² (μg/L)	
Finished (treated)	288	0 (2001)	0	0	0.0113-0.10	
Finished (treated)	582	0 (2002)	0	0	0.005-0.020	
Finished (treated)	782	0 (2003)	0	0	0.005-0.020	
Finished (treated)	380	0 (2004)	0	0	0.0013 - 0.0113	
Unfinished (untreated)	381	0 (2004)	0	0	0.0013 - 0.0113	
Finished (treated)	230	4 (2005)	1.7	0.019	0.0050 - 0.0113	

0.9

0.019

0.0050 - 0.0113

2 (2005)

Unfinished (untreated)

Reservoir Pilot Monitoring Program (USGS, 2001)

232

Myclobutanil was included in a study that monitored a number of water supply reservoirs and finished water (USGS, 2001). Residues were detected at low concentrations in about 1 percent of 317 samples of raw water, with no detections in the finished water (Table 15). The degradation products were not included.

ı			_	_			
١	Table 15. Myclo	butanil results	from the su	mmary of an	alvsis of mod	erate-use r	oesticides -
ł							
ı	and degradates i	n water sample	e from wate	r sunnly ints	ikes and finis	hed-sunnk	tanc in
ı	and defindancs.	in water sample	3 HOM WALL	a suppry me	inco third initis	nca suppij	cubs m
Į	Desagnair Dilet N	Monitoring Dro	arom (TICC	2 20017			
Į	Reservoir Pilot N	aromnorms ero	gram. (USG	13, 2001 <i>j</i> .			
ı			T				

	No. of Samples	No. of Detections (Quantifiable No. of Detections)	Frequency of Detection (%)	Maximum Detection (µg/L)	Method Reporting Level (μg/L)
Raw Water	317	3 (2)	0.9	0.015	0.008
Finished Water	221	0	0	0	0.008

USGS NAWOA (National Water Quality Assessment Program)

The USGS. NAWQA data was downed load on 09/25/07 (http://ca.water.usgs.gov/pnsp/ http://waterdata.usgs.gov/nwis/qw) and "contained data through water year 2006".

Only one distinct detected concentration or LOD value was reported for the pair.

² LOD is Limit of detection.

Surface Water Analysis

Myclobutanil was detected in ambient surface water (Table 16) at a detection frequency of 20.4 % (541 of 2647 samples). The maximum daily myclobutanil concentration was 0.507 μ g/L for a sampling site located (USGS Sampling Station # 2335870) in Cobb County, GA. Land use in the Cobb County, GA watershed is designated as urban. The maximum average myclobutanil concentration was 0.347 μ g/L for a sampling site (USGS Sampling Station # 3730112120393401) located in Merced County, CA. The minimum reporting limit (MRL) varies from 0.0022 to 0.25 μ g/L, with a median MRL of 0.008 μ g/L (Appendix C).

Table16: I Surface W									WQA	
Exposure Value	Detects (%)	Max	99,9	99	95	Percentil 90	e 80	70	60	50
Peak Average	20.4	0.507	0.486	0.344	0.074	0.033	0.033	0.033	0.010	0.008

Ground Water Analysis

Myclobutanil was detected in ground water (Table 17) at a detection frequency is 0.15% (3 of 2061 samples). Myclobutanil was detected in three wells. The maximum concentration is 0.0338 μg/L for a well (USGS Sampling Station # 295358095374101) located in Harris County, TX. Land use in the Harris County recharge zone is designated as urban. The minimum reporting limit (MRL) varies from 0.0022 to 0.033 μg/L with a median MRL of 0.008 μg/L.

Table 17: Distribution of Myclobutanil Concentrations in USGS NAWQA Ground Water Monitoring Data Monitoring Data							
Station ID	Concentration (µg/L)	Well Description					
295358095374101	0.0338	Harris County, TX; Well Depth 33.5 ft: Urban Land Use					
322237086112101	0.0208	Montgomery County, AL; Well Depth 31.5 ft; Urban Land Use					
465509119371501	0.0079	Grant County, Washington; Well Depth 15 ft; Ag Land Use					

3. Measures of Terrestrial Exposure

a. Terrestrial Exposure Modeling

Exposure of free-ranging terrestrial animals is a function of the timing and extent of pesticide application with respect to the location and behavior of those species. OPP's terrestrial exposure model generates exposure estimates assuming that the animal is present on the use site at the time that pesticide levels are highest. The upper-bound pesticide residue concentration on food items is calculated from both initial applications and any additional applications, taking into account pesticide degradation between applications. Although this approach is conservative, it is reasonable, particularly when considering acute risks. For acute risks, the assumption is that the duration of exposure is a single day and, again, occurs when residue levels are highest. In evaluating chronic risks, longer-term exposure estimates are also based on the assumption that the animal is present on the use site when residue levels are highest and furthermore that it repeatedly forages on the use site although the frequency and duration of foraging events on the use site are not explicitly considered or specified.

The current screening-level approach does not directly relate timing of exposure to critical or sensitive population, community, or ecosystem processes. Given that the application timing and location is crop-dependent, it is difficult to address the temporal and spatial co-occurrence of myclobutanil use and sensitive ecological processes. However, pesticides are frequently used from spring through fall; crop cultivation frequently starts in the spring, hence uses of myclobutanil are likely to occur in spring and perhaps summer. Spring and early summer are typically seasons of active migrating, feeding, and reproduction for many wildlife species. The increased energy demands associated with these activities (as opposed to hibernation, for example) can increase the potential for exposure to pesticide-contaminated food items since agricultural areas can represent a concentrated source of relatively easily obtained, high-energy food items. In this assessment, the spatial extent of exposure for terrestrial animal species is limited to the use area only and the area immediately surrounding the use area.

Currently, the Agency does not require toxicity studies on reptiles and amphibians in support of pesticide registrations. To accommodate this data gap, birds are used as surrogates for terrestrial-phase amphibians and reptiles. It is assumed that, given the usually lower metabolic demands of reptiles and amphibians compared to birds, exposure to birds would be greater due to higher relative food consumption. While this assumption is likely true, there are no supported relationships regarding the relative toxicity of a compound to birds and herpetofauna. The lack of toxicity data on reptiles and amphibians represents a source of uncertainty in this assessment.

Tables 18a and 18b list selected predicted EECs for birds, reptiles, terrestrial amphibians, and mammals obtained from T-REX simulations for all proposed uses of myclobutanil at the maximum label rates.

	Terrestrial Food-Item Foliar Dissipation Ha	Residue Estimates for Bir If-life of 35 Days.	ds With Myclobutani	l Proposed Uses
Crop	Application Rate (lb a.i./A) No. Applications/season Application interval (days)	Food Item	Maximum Dose-Based EECs (mg/kg) ¹	Dietary-Based EECs
	0.25	Short grass	251.5	220.82
Tropical		Tall grass	115.27	101.21
Fruit	8	Broadleaf plants/ small insects	141.47	124.21
	14	Fruits, pods, seeds, lg. insects	15.72	13.8
	0.125	Short grass	104.05	91.36
Okra and	4	Tall grass	47.69	41.87
other Crops		Broadleaf plants/ small insects	58.53	51.39
	10	Fruits, pods, seeds, lg. insects	6.50	5.71
	0.125	Short grass	151.17	132.73
Lettuce	10	Tall grass	69.29	60.84
Lettuce		Broadleaf plants/ small insects	85.03	74.66
	8	Fruits, pods, seeds, lg. insects	9.45	8.30
	0.10	Short grass	91.50	80.34
Artichokes	0.10 6	Tall grass	41.94	36.82
ATHUHOKES	6 14	Broadleaf plants/ small insects	51.47	45.19
	17	Fruits, pods, seeds, lg. insects	5.72	5.02

¹Based on 20 gram birds (acute)

	Terrestrial Food-Item ning a Foliar Dissipatio	Residue Estimates for Ma on Half-life of 35 Days.	mmals With Myclobu	itanil Proposed
Crop	Application Rate (lb a.i./A) No. Applications/season Application interval (days)	Food Item	Maximum Dose-Based EECs (mg/kg) ¹	Dietary-Based EECs
	0.25	Short grass	210.5	220.82
Tropical		Tall grass	96.50	101.21
Fruit	8	Broadleaf plants/ small insects	118.43	124.21
	14	Fruits, pods, seeds, lg. insects	13.16	13.8
		Granivore	2.92	N/A
	0.125	Short grass	87.10	91.36
Okra and	4	Tall grass	39.92	41.87
other Crops	· ·	Broadleaf plants/ small insects	49.00	51.39
other Crops	10	Fruits, pods, seeds, lg. insects	5.44	5.71
		Granivore	1.21	
		Short grass	126.55	132.73
	0.125	Tall grass	58.00	60.84
Lettuce	10	Broadleaf plants/ small insects	71.18	74.66
	8	Fruits, pods, seeds, lg. insects	7.91	8.30
		Granivore	1.76	N/A
Artichokes	0.10	Short grass	76.59	80.34

Page 34 of 88

	Terrestrial Food-Item ning a Foliar Dissipation	Residue Estimates for Ma n Half-life of 35 Days.	mmals With Myclobi	itanil Proposed
Crop	Application Rate (lb a.i./A) No. Applications/season Application interval (days)	Food Item	Maximum Dose-Based EECs (ing/kg) ¹	Dietary-Based EECs
	6	Tall grass	35.11	36.82
	14	Broadleaf plants/ small insects	43.08	45.19
		Fruits, pods, seeds, lg. insects	4.79	5.02
		Granivore	1.06	N/A

¹Based on 15 gram mammals (acute)

b. Residue Studies

As stated previously, multiple residue decline and foliar dissipation studies are available; however, it is unclear as to whether or not these studies provide sufficient data to provide a foliar half-life for use in the terrestrial exposure model, T-REX (Version 1.3.1). Therefore, T-REX was modeled using the default half-life of 35 days and to provide an estimate assuming rapid dissipation in/on food items, for risk description purposes, a half-life of 2 days.

C. Ecological Effects Characterization

1. Aquatic Effects Characterization

a. Aquatic Animals

(1) Acute Effects

Freshwater Fish and Aquatic-Phase Amphibians

Table 19. Freshwater Fish Acute Toxicity Data.								
Common Name	%AI	Study parameters	LC ₅₀ /NOAEC/LOAEC	MRID	Classification/ Category			
Bluegill sunfish Lepomis macrochirus	84.5	96 hour study 10 fish/vessel 0, 0(solvent), 0.84, 1.5, 2.7, 4.7, 8.4 mg/L Static study	96 HR LC ₅₀ =2.4 (1.5-4.7) mg/ $\mathbf{L}^{2,3}$. NOAEC = 1.5 mg/ \mathbf{L} LOAEC = 2.7 mg/ \mathbf{L} based on quiescence, loss of equilibrium and death.	00144285	Acceptable Moderately toxic			

Page 35 of 88

Table 19. Freshwater Fish Acute Toxicity Data.								
Common Name	%AI	Study parameters	LC ₅₀ /NOAEC/LOAEC	MRID	Classification/ Category			
Rainbow trout Onchorhynchus mykiss	84.5	96 hour study 10 fish/vessel 0, 0(solvent), 1.0, 1.8, 3.2, 5.6, 10 mg/L Static study	96 HR LC ₅₀ =4.2 (3.2-5.6) mg/L NOAEC = 1.8 mg/L LOAEC = 3.2 mg/L (loss of equilibrium, surfacing and dark coloration). Mortality observed at 5.6 mg/L and above.	00141677	Acceptable Moderately toxic			

 $^{^{1}}$ Based on LC₅₀ (mg/L): < 0.1 very highly toxic; 0.1-1 highly toxic; >1-10 moderately toxic; >10-100 slightly toxic; >100 practically nontoxic ² Rold ---

Bold value is the value that will be used to calculate risk quotients

Freshwater Invertebrates

Table 20. F	Table 20. Freshwater Invertebrates Acute Toxicity Data								
Common Name	%AI	Study parameters	EC ₅₀ /NOAEC/LOAEC	MRID	Classification/ Category				
Water flea Daphnia magna	84.5	48 hour study 20 inverts/conc. level 0, 0(solvent), 1.8, 3.2, 5.6, 10, 18 mg/L Static study	48 HR EC ₅₀ =11 (9.5-13) mg/L ^{2,3} . Slope = 6.83 (4.1 – 9.6) NOAEC = 10 mg/L LOAEC = 5.6 mg/L (settled to the bottom). Mortality observed at 10 mg/L and above.	00141678	Acceptable Slightly toxic ¹				

Based on EC₅₀ (mg/L): < 0.1 very highly toxic; 0.1-1 highly toxic; >1-10 moderately toxic; >10-100 slightly toxic; >100 practically nontoxic

Bold value is the value that will be used to calculate risk quotients

Range is 95% confidence interval for endpoint

³ Range is 95% confidence interval for endpoint

Marine/Estuarine Fish

Common Name	%AI	Study parameters	LC ₅₀ /NOAEC/LOAEC	MRID	Classification/
Sheepshead minnow Cyprinodon variegatus	93	96-hour study 20 fish/conc. Level 0, 0(solvent), 1.2, 1.8, 2.3, 3.8, 6.3 mg/L (mean measured) Flow-through study	96 HR LC ₅₀ =4.7 (3.8-6.3) mg/L ^{2,3} . NOAEC = 1.2 mg/L LOAEC = 1.8 mg/L (errative hebanior, darkened pigmentation, lethargy; fish at higher concentration levels also exhibited partial loss of equilibrium and rapid respiration). Mortality observed at 3.8 mg/L and above.	42747903	Acceptable Moderately toxic ¹

Based on LC₅₀ (mg/L): < 0.1 very highly toxic; 0.1-1 highly toxic; >1-10 moderately toxic; >10-100 slightly toxic; >100 practically nontoxic

² **Bold** value is the value that will be used to calculate risk quotients

³ Range is 95% confidence interval for endpoint

Marine/Estuarine Invertebrates

Table 22. Estuarine/Marine Invertebrate Acute Toxicity Data								
Common Name	%AI	Study parameters	EC ₅₀ /NOAEC/LOAEC	MRID	Classification /Category			
Eastern oyster Crassostrea virginica	93	96-hour study 40 oysters/conc. level 0, 0(solvent), 0.091, 0.16, 0.29, 0.48, 0.78 mg/L (mean measured) Flow-through study	96 HR EC ₅₀ =0.68 (0.64-0.73) mg/L ^{2,3} . Slope = 2.09 (-0.8 – 5.0) NOAEC = 0.48 mg/L LOAEC = 0.78 mg/L (shell deposition). Inadequate shell growth in controls may mask pesticide related shell growth effects.	42747901	Supplemental Highly toxic ¹			

Table 22. Estu	Table 22. Estuarine/Marine Invertebrate Acute Toxicity Data								
Common Name	%AI	Study parameters	EC ₅₀ /NOAEC/LOAEC	MRID	Classification /Category				
Mysid Mysidopsis bahia	93	Two 96-hour studies 20 mysids/conc. Level 0, 0 (solvent), 180, 260, 410, 550, 1000 µg/L (first study); 0, 0 (solvent), 34, 43, 78, 110, 200 µg/L (second study) (mean measured) Flow-through study	96-HR LC ₅₀ = 0.24 (0.20 – 0.27) mg/L. Slope = 6.4 Precise LC ₅₀ could not be determined in second study NOAEC could not be determined in first study. NOAEC = 0.043 mg/L from second study LOAEC = 0.078 mg/L (mortality; sublethal effects observed at levels where mortality was observed – lethargy, darkened pigmentation).	42747902	Acceptable Highly toxic				

¹Based on EC₅₀ (mg/L): < 0.1 very highly toxic; 0.1-1 highly toxic; >1-10 moderately toxic; >10-100 slightly toxic; >100 practically nontoxic ² **Bold** value is the value that will be used to calculate risk quotients

(2) Chronic Effects

Freshwater Fish

Table 23. Freshwater Fish Chronic Toxicity Data							
Common Name	%AI	Study parameters	NOAEC/LOAEC	MRID	Classification /Category		
Fathead minnow Pimephales promelas	-	Early life stage 0, 0 (solvent), 0.45, 0.98, 2.2, 4, 8.5 mg/L tested	0.98 mg/L ¹ Early life LOAEC=2.2 mg/L Total mortality at 8.5 mg/L.	00164986 40409201 40480401	Acceptable		

Bold value is the value that will be used to calculate risk quotients

Freshwater Invertebrates

There are currently no chronic freshwater invertebrate studies available for myclobutanil.

Estuarine/Marine Fish

There are currently no chronic estuarine/marine fish studies available for myclobutanil.

³ Range is 95% confidence interval for endpoint

Estuarine/Marine Invertebrates

There are currently no chronic estuarine/marine invertebrate studies available for myclobutanil.

(3) Field Studies

There are currently no aquatic field studies available for myclobutanil.

b. Aquatic Plants

Table 24. Aquatic Plant Toxicity Data						
Common Name	%AI	Toxicity	NOAEC	MRID	Classification /Category	
Freshwater green algae Tier II reproduction Selenastrum capricornutum	100	120-hour EC ₅₀ 0.83 mg/L ¹ (0.56-1.1) ² . Mean measured concentrations tested: 0, 0 (solvent), 0.56, 1.1, 2.2, 5.1, 6.6 mg/L	120-hour NOAEC = 0.56 mg/L LOAEC = 1.1 mg/L (cell density)	419848-01	Acceptable	

Bold value is the value that will be used to calculate risk quotients Range is 95% confidence interval for endpoint

2. Terrestrial Effects Characterization

a. Terrestrial Animals

(1) Acute Effects

Birds

Table 25. Avia	Table 25. Avian Acute Toxicity Data					
Common Name	%AI	Study parameters	LD ₅₀ /LC ₅₀ NOAEL/ LOAEL	MRID	Classification /Category	
Bobwhite Quail Colinus virginianus	84.5	Acute oral study 10 birds/dose level 21 day observation period 0 (vehicle), 316, 464, 681, 1000, 1470 mg/kg tested	LD ₅₀ 498 (408 – 598) mg/kg bw ³ Slope = 7.03 (3.5-10.5) NOAEL not determined LOAEL 316 mg/kg (lethargy and anorexia). Mortalities at all dose levels (1, 4, 8, 10 and 10, respectively). Good dose response; NOAEL not critical in this case.	00144286	Acceptable Slightly toxic ¹	
Bobwhite Quail Colinus virginianus	84.5	Subacute dietary study 10 birds/concentration level 5 days on treatment, 3 days observation 0 (vehicle), 246, 641, 1150, 3000, 4530 ppm tested (measured concentrations)	LC ₅₀ >4530 ppm NOAEC: 1150 ppm LOAEC: 3000 ppm Mortality: 2 at 3000 ppm and 1 at 4530 ppm. Anorexia and lethargy at 3000 and 4530 ppm	00144287	Acceptable Slightly toxic ²	
Mallard Duck Anas platyrhynchos	84.5	Subacute dietary study 10 birds/concentration level 5 days on treatment, 3 days observation 0 (vehicle), 270, 620, 1250, 2220, 4090 ppm tested (measured concentrations)	LC ₅₀ >4090 ppm NOAEC: 1250 ppm LOAEC: 2220 ppm (anorexia and lethargy). One bird died at 4090 ppm.	00144288	Acceptable Slightly toxic ²	

Based on LD₅₀ (mg/kg) <10 very highly toxic; 10-50 highly toxic; 51-500 moderately toxic; 501-2000 slightly toxic; >2000 practically nontoxic

² Based on LC₅₀ (mg/kg) <50 very highly toxic; 50-500 highly toxic; 501-1000 moderately toxic; 1001-5000 slightly toxic; >5000 practically nontoxic

³ **Bold** value is the value that will be used to calculate risk quotients

Mammals

Table 26. M	ammalia	n Acute Toxicity	Data		
Common Name	%AI	Study parameters	LD ₅₀ /NOAEL	MRID	Classification /Category
Laboratory mouse Mus musculus	91.9	Acute oral study 0, 1.3, 2.0, 3.2, 5.0 g/kg bw tested 10/dose level 14-day observation period	Acute oral LD ₅₀ =1360 mg/kg bw in female mice (most sensitive species (original DER mistakenly stated that it was in the rat)). Mortality at all dose levels tested. Multiple clinical signs, including ataxia, tremors, loss of righting and others – not doserelated; however, early deaths may have affected reporting. Converts to a rat equivalent dose of 665 mg/kg for risk estimation (see Risk Characterization Section). (HED used rat values 1.6 (M) and 2.29 (F) g/kg bw)	00165239	Acceptable Slightly toxic ¹
Laboratory mouse Mus musculus	1,2,4- triazole	Acute oral study	$LD_{50} = 3650 \text{ mg/kg}$	45284001	Practically nontoxic

Based on LD₅₀ (mg/kg) <10 very highly toxic; 10-50 highly toxic; 51-500 moderately toxic; 501-2000 slightly toxic; >2000 practically nontoxic

Bold value is the value that will be used to calculate risk quotients

Acute oral toxicity data with the rat are available on several myclobutanil formulations (see Table 27 below). With one exception (60 DF formulation), the myclobutanil formulations, including those mixed with other pesticides are not more acutely toxic to mammals than the technical material. The 60 DF formulation is 1.6 to 1.9 times more toxic than the technical material. The risk estimation is conducted with a mouse study. For estimation of risk and utilization in the terrestrial exposure model, T-REX, the rat equivalent dose estimated from the mouse study is 665 mg/kg bw. The assessment with this study is protective of the acute mammalian toxicity endpoint for the 60 DF formulation. However, an uncertainty remains as to whether or not the 60 DF would be more acutely toxic in the mouse.

Table 27. Acute Rat Toxicity Comparison of Myc	Table 27. Acute Rat Toxicity Comparison of Myclobutanil Formulations					
Formulation (%)	LD ₅₀ (mg/kg bw)	MRID				
Technical Product	1600 (M)	00141662				
	2290 (F)					
1.5% with 2.5% permethrin	> 5050 (M & F)	44155803				
2.25% with 60% mancozeb	> 5000 (M)	40149003				
60% formulation with inerts	980 (M)	00164467, 00164468				
	1235 (F)					
Fludioxonil, 1.45%; Mefenoxam, 3.61%;	5979 (F)	47092603				
Azoxystrobin, 8.55%; and Myclobutanil, 9.75%						
Up-and-Down Method: 0.9% Myclobutanil	> 5000 (F)	46886701				

Page 41 of 88

Table 27. Acute Rat Toxicity Comparison of M	yclobutanil Formulations	
Formulation (%)	LD ₅₀ (mg/kg bw)	MRID
(granules)		
1% formulation	> 5000 (M & F)	45381001
21% formulation	3749 (F) >5000 (M)	45218401
6.0% formulation	LD ₅₀ between 500 & 5,000 (M & F)	45056903
1% formulation	> 5,000 (M & F)	44265201

Terrestrial Invertebrates

Data on honey bees are available (MRID 00144289); however, a review of the study is not available and it is not known whether or not this study is acceptable. The bees were exposed to a finished dust containing 27.58% a.i. in a bell jar vacuum duster at dosages of approximately 120, 240 or 362 μ g technical material per bee. Observations for clinical signs of toxicity were made daily for 96 hours. These data indicate that myclobutanil (81.1%) technical may not be toxic to honey bees at a dosage of 100 μ g/bee.

(2) Chronic Effects

Birds

Table 28. Avian Chronic Toxicity Data						
Common Name	%AI	Study Parameters	NOAEC/LOAEC	MRID	Classification /Category	
Bobwhite Quail Colinus virginianus	94.2	Reproduction study Mean measured concentrations: 0 (vehicle), 72.5, 124.2, 181.8, 255.8 ppm 16 pairs per concentration level	NOAEC = 256 ppm ¹ LOAEC >256 ppm No treatment-related effects at any level. Not tested at sufficiently high concentration levels	43087901	Supplemental	
Mallard Duck Anas platyrhynchos	94.2	Reproduction study Mean measured concentrations: 0 (vehicle), 72.5, 124.2, 181.8, 255.8 ppm 16 pairs per concentration level	NOAEC = 256 ppm LOAEC > 256 ppm No treatment-related effects at any level. Not tested at sufficiently high concentration levels	43087902	Supplemental	

Bold value is the value that will be used to calculate risk quotients

Mammals

Common Name	%AI	Study Parameters	NOAEC/ LOAEC	MRID	Classification/ Category
Laboratory rat Rattus norvegicus	84.5	2-Generation reproduction study 25 rats/sex/group 0, 50, 200 or 1000 ppm 4, 16 or 80 mg/kg bw/day based on overall mean concentration of active ingredient in dietary analyses (HED document 004936; HED records center file R050631)	NOAEC = 200 ppm NOAEL = 16 mg/kg/day LOAEC=1000 ppm LOAEL = 80 mg/kg/day (testicular, epididymal and prostatic atrophy in P2 males; slight increase in stillborns, decrease in body weight gain in pups during lactation in F1 and F2 generations) Parental NOAEL:	00149581 00143766	Acceptable
Laboratory rat Rattus norvegicus	1,2,4- triazole	Reproduction and fertility effects 0, 250, 500, 3000 ppm M: 15, 31, 189 mkd F: 18, 36, 218 mkd	Parental NOAEL: <15 mg/kg/day Parental LOAEL: 15 mg/kg/day Offspring NOAEL: <19 mg/kg/day Offspring LOAEL: 19 mg/kg/day based Repro NOAEL: 15 mg/kg/day Repro LOAEL: 31 mg/kg/day Repro LOAEL: 31 mg/kg/day based on abnormal sperm and ↓# of CL in F1 females At 218 mg/kg/day, reproductive failure (no viable offspring), ↑CL in F0 parental females	4040/304	Acceptable

Bold value is the value that will be used to calculate risk quotients

(3) Field Studies

There are currently no terrestrial ecotoxicity field studies available for myclobutanil.

b. Terrestrial Plants

There are currently no terrestrial plant studies available for myclobutanil.

IV. Risk Characterization

+

A. Risk Estimation - Integration of Exposure and Effects Data

A quantitative estimation of risk integrates EECs and toxicity estimates and evaluates the likelihood of adverse ecological effects to non-target species. In a deterministic approach, an exposure estimate is divided by a single point estimate of toxicity to calculate a risk quotient (RQ). The RQ is then compared to Agency Levels of Concern (LOCs, Appendix E), which serve as criteria for categorizing potential risk to non-target organisms and the need to consider regulatory action.

There are no toxicity data with the degradate, 1,2,4-triazole for aquatic organisms. Therefore, the degradate was considered to be of equal toxicity to the parent and was factored into the aquatic EECs as total toxic residues. No toxicity data with the degradate are available for birds. The chronic studies with the parent, myclobutanil on birds indicates no toxicity; however, the studies were not tested at concentration levels as high as levels in mammals that showed reproductive effects. Acute and chronic toxicity data for the degradate are available for mammals. These data indicate that the degradate is less toxic than the parent on an acute basis and is equally toxic as the parent on a chronic basis. The target organs in the chronic studies are similar as well. Both the parent, myclobutanil and the 1,2,4-triazole degradate are considered to be persistent. In addition, the drinking water assessment in support of the human health aggregate risk assessment on 1,2,4-triazole, triazole alanine, triazole acetic acid states that the degradate residue may accumulate in plants after triazole application on cropped soil and thus be available on a chronic exposure basis (Memorandum from I. Maher to M. Doherty et. al, 2/28/2006; D320682).

Therefore, based on the mammalian toxicity data, the persistence data on both the parent and the degradate and indications that the degradate may accumulate in plants, the potential additional risk to terrestrial organisms from the degradate is considered only following chronic exposure. Potential additional risks from the degradate will be discussed in the risk description section IV.B.2.a.(2).

1. Risk to Aquatic Animals and Plants

a. Aquatic Animals

(1) Risk Following Acute Exposure

Page 44 of 88

Freshwater Fish and Aquatic-Phase Amphibians

The acute LOC for endangered freshwater fish is exceeded for one modeled scenario, LA tropical fruit, both aerial and ground application. None of the acute freshwater fish LOCs are exceeded for any of the other tropical fruit scenarios or for any of the other proposed uses. Table 30 shows the acute risk for freshwater fish with the LA tropical fruit scenario and with the scenario which provides the next highest peak EECs (CA lettuce).

Table 30. Mycle	obutanil: Acute Ris	ks to Freshwater Fish			
Species	Toxicity Endpoint (µg/L)	Scenario App. Rate # Applications/yr.	Peak EEC (µg/L)	Acute Risk Quotient	Levels of Concern Exceeded ²
Bluegill sunfish Lepomis macrochirus	96-hr LC ₅₀ = 2400 Technical	LA- Tropical Fruit 0.25 lb a.i./A 8 applications/season Aerial	202.7	0.083	Yes
Bluegill sunfish Lepomis macrochirus	96-hr LC ₅₀ = 2400 Technical	LA- Tropical Fruit 0.25 lb a.i./A 8 applications/season Ground	194.8	0.08	Yes
Bluegill sunfish Lepomis macrochirus	96-hr LC ₅₀ = 2400 Technical	CA – Lettuce 2.4 lb a.i./A, 3 crops/season 4 applications/crop (12/year) Aerial	117.0	0.049	No

Acute Risk Quotients are calculated using the following formula: EEC/LC₅₀

Freshwater Invertebrates

The acute LOCs are not exceeded for freshwater invertebrates for any of the proposed uses. Table 31 shows the acute risk for freshwater invertebrates with the LA tropical fruit scenario, which provides the highest potential peak EEC.

²Acute LOC for freshwater fish = 0.05 for endangered species, 0.1 for restricted use, and 0.5 for non-listed species

³ Bold vales indicates that the acute LOCs are exceeded.

Species	Toxicity Endpoint (µg/L)	Scenario App. Rate # Applications/yr.	Peak EEC (μg/L)	Acute Risk Quotient ¹	Levels of Concern Exceeded
Water Flea (Daphnia magna)	48-hr EC ₅₀ = 11000 Technical	LA - Tropical Fruit 0.25 lb a.i./A 8 applications/season aerial	202.7	0.02	No

Acute Risk Quotients are calculated using the following formula: EEC/LC50

Marine/Estuarine Fish

The acute LOCs are not exceeded for estuarine/marine fish for any of the proposed uses. Table 32 shows the acute risk for estuarine/marine fish with the LA tropical fruit scenario, which provides the highest potential peak EEC.

Species	Toxicity Endpoint (µg/L)	Scenario App. Rate # Applications/yr.	Peak EEC (µg/L)	Acute Risk Quotient ¹	Levels of Concern Exceeded ²
Sheepshead Minnow (Cyprinodon variegates)	96-hr LC ₅₀ = 4700 Technical	LA - Tropical Fruit 0.25 lb a.i./A 8 applications/season aerial	202.7	0.04	No

Acute Risk Quotients are calculated using the following formula: EEC/LC50

Marine/Estuarine Invertebrates

For mollusks, the acute endangered species and restricted use LOCs are exceeded with tropical fruit (LA and PR) and CA lettuce scenarios for both ground and aerial applications. None of the other proposed uses exceed the acute LOCs, including the CA tropical fruit scenario, either with ground or aerial applications. For crustaceans, all of the acute aquatic LOCs are exceeded for tropical fruit (LA), both aerial and ground applications. The acute restricted use aquatic LOC is exceeded for lettuce (CA, aerial and ground) and tropical fruit (PR, aerial and ground and CA, aerial). The acute endangered species aquatic LOC is exceeded for all uses except okra (CA, aerial and ground) and tropical fruit (FL, ground). For EECs for all uses, please see Table 12.

²Acute LOC for freshwater invertebrates = 0.05 for endangered species, 0.1 for restricted use, and 0.5 for non-listed species

²Acute LOC for freshwater fish = 0.05 for endangered species, 0.1 for restricted use, and 0.5 for non-listed species

Table 33 summarizes acute risks for marine/estuarine invertebrates with the selected scenarios.

Table 33. Myclo	butanil: Acute Ris	ks to Marine/Estu	arine Invert	ebrates	
Species	Toxicity Endpoint (µg/L)	Scenario App. Rate # Applications/yr.	Peak EEC (μg/L)	Acute Risk Quotient	Levels of Concern Exceeded ²
Eastern Oyster (Crassostrea virginica)	96-hr EC ₅₀ = 680 Technical	LA - Tropical Fruit 0.25 lb a.i./A 8 applications/season Aerial	202.7	0.273	Yes
Eastern Oyster (Crassostrea virginica)	96-hr EC ₅₀ = 680 Technical	CA – Lettuce 2.4 lb a.i/A, 3 crops/season 4 applications/crop (12/year) Ground	117.0	0.14	Yes
Eastern Oyster (Crassostrea virginica)	96-hr EC ₅₀ = 680 Technical	PR – Tropical Fruit 0.25 lb a.i./A 8 applications/season Ground	102.3	0.14	Yes
Eastern Oyster (Crassostrea virginica)	96-hr EC ₅₀ = 680 Technical	CA - Tropical Fruit 0.25 lb a.i./A 8 applications/season Aerial	28.0	0.03	No
Mysid (Mysidopsis bahia)	96-hr LC ₅₀ = 240 Technical	LA - Tropical Fruit 0.25 lb a.i./A 8 applications/season Aerial	202.7	0.84	Yes
Mysid (Mysidopsis bahia)	96-hr LC ₅₀ = 240 Technical	CA – Artichoke 0.10 lb a.i./A 6 applications/season Ground	23.5	0.098	Yes
Mysid (Mysidopsis bahia)	96-hr LC ₅₀ = 240 Technical	CA - Tropical Fruit 0.25 lb a.i./A 8 applications/season Ground	12.3	0.05	Yes

Page 47 of 88

Table 33. Myclobutanil: Acute Risks to Marine/Estuarine Invertebrates						
Species	Toxicity Endpoint (µg/L)	Scenario App. Rate # Applications/yr.	Peak EEC (μg/L)	Acute Risk Quotient ¹	Levels of Concern Exceeded ²	
Mysid (Mysidopsis bahia)	96-hr LC ₅₀ = 240 Technical	Fl - Tropical Fruit 0.25 lb a.i./A 8 applications/season Ground	8.0	0.03	No	

Acute Risk Quotients are calculated using the following formula: EEC/LC50

(2) Risk Following Chronic Exposure

Freshwater Fish and Aquatic-Phase Amphibians

The chronic LOC for aquatic species is not exceeded for any of the proposed uses. Table 34 shows the chronic risk for freshwater fish with the tropical fruit (LA) scenario, which provides the highest potential 60-day EEC.

Species	Toxicity Endpoint (µg/L)	Scenario App. Rate # Applications/yr.	60-Day EEC (µg/L)	Chronic Risk Quotient ¹	Levels of Concern Exceeded ²
Fathead Minnow (Pimephales promelas)	NOAEC = 980 Technical	LA – Tropical Fruit 0.25 lb a.i./A 8 applications/season Aerial	197.8	0.20	No

^T Chronic Risk Quotients are calculated using the following formula: EEC/NOAEC

Freshwater Invertebrates

Risk to freshwater invertebrates following chronic exposure was not estimated because no chronic toxicity studies are available.

Marine/Estuarine Fish

A chronic toxicity study was not available for estuarine/marine fish. Therefore, an acute to chronic ratio with freshwater fish and marine/estuarine fish was utilized to estimate a chronic toxicity endpoint for marine/estuarine fish for use in assessing potential risk. The acute toxicity

²Acute LOC for freshwater invertebrates = 0.05 for endangered species, 0.1 for restricted use, and 0.5 for non-listed species

³ Bold vales indicates that the acute LOCs are exceeded.

²Chronic LOC for freshwater fish = 1

values for freshwater and estuarine/marine fish are 2400 and 4700 ppb, respectively. The chronic toxicity endpoint for freshwater fish is 980 ppb. The ratio of the acute values is 4700/2400 = 1.96. Nine hundred eighty X 1.96 = 1921 ppb. This value will be used as a chronic value for marine/estuarine fish. The chronic LOC for aquatic species is not exceeded for any of the proposed uses. Table 35 shows the chronic risk for marine/estuarine fish with the tropical fruit scenario (LA), which provides the highest potential 60-day EEC.

Species	Toxicity Endpoint (µg/L)	Scenario App. Rate # Applications/yr.	60-Day EEC (μg/L)	Chronie Risk Quotient ¹	Levels of Concern Exceeded
Sheepshead	NOAEC = 1921	LA - Tropical Fruit	197.8	0.10	No
Minnow		0.25 lb a.i./A			1
(Cyprinodon		. 8			
variegates)		applications/season		,	
		Aerial			

Chronic Risk Quotients are calculated using the following formula: EEC/NOAEC with the NOAEC value estimated with an acute to chronic ratio, utilizing the acute data from freshwater and marine/estuarine fish studies and chronic data from a freshwater fish study.

Marine/Estuarine Invertebrates

Risk to estuarine/marine invertebrates following chronic exposure was not estimated because no toxicity studies are available.

b. Aquatic Plants

Risk to aquatic vascular plants was not estimated because no toxicity studies are available. The aquatic plant LOC is not exceeded for aquatic listed and unlisted nonvascular plants for any of the proposed uses. Table 36 summarizes risk to aquatic non-vascular plants with the tropical fruit scenario (LA), which provides the highest potential peak EECs.

²Chronic LOC for marine/estuarine fish = 1

Table 36. Myclobutan	il: Risk to Aquatic Plants a,b,c	
Scenario	Unlisted Non-Vascular Plant RQs ^d	Listed Non-Vascular Plant RQsd
LA - Tropical Fruit 0.25 lb a.i./A 8 applications/season	0,24 aerial 0.23 ground	0.36 aerial 0.35 ground

^a Peak EEC for tropical fruit (LA) is 202.7 ppb for aerial and 194.8 for ground applications; detailed calculations of PRZM/EXAMS modeling is provided in Appendix B.

^b Acute Risk Quotients are calculated using the following formulas: EEC/EC₅₀ for unlisted plants and EEC/NOAEC for listed plants, Endangered Species LOC = 1.0.

^c Based on endangered toxicity threshold (NOAEC) of 560 μ g/L and unlisted plant toxicity threshold (EC₅₀) of 830 μ g/L (MRID 43889102) for freshwater non-vascular plants.

d There are no vascular plant toxicity data.

2. Risk to Terrestrial Animals and Plants

a. Terrestrial Animals

To assess risks of myclobutanil to non-target birds and mammals, EECs and acute and chronic RQs for residues on various forage categories (short grass, tall grass, broadleaf plants/small insects, fruits/pods/large insects, and seeds) were obtained from the Tier 1 model, T-REX v. 1.3.1 for foliar spray applications to the proposed crops. The model assumes initial concentrations on plant surfaces based on Kenaga predicted maximum residues as modified by Fletcher *et al.* (1994), and assumes first-order dissipation. Inputs in T-REX include multiple applications where applicable.

For birds, acute RQs are derived using dose-based and dietary-based acute toxicity values, and chronic RQs are derived using a dietary-based chronic toxicity value. For mammals, acute RQs are derived using a dose-based acute toxicity value, and chronic RQs are derived using a dietary-based chronic toxicity value and a dose-based chronic toxicity value calculated by the study authors (MRIDs 00149581 and 00143766), of the study using measured food consumption and body weight values. Dietary-based RQs are calculated using EECs expressed in terms of residue concentration for the various forage categories and toxicity values (LC₅₀ or NOAEC) expressed in units of dietary concentration. Dose-based RQs are calculated using a body weight-adjusted LD₅₀ and consumption-weighted equivalent dose sorted by food source and body size. For both birds and mammals, three weight categories (or sizes) are considered. Tables 37 through 44 summarize the upper bound terrestrial EECs and acute and chronic RQ values for birds and mammals.

(1) Risk Following Acute Exposure

Birds

Tables 37 and 38 show that the acute dose-based LOCs are exceeded for birds in several categories for the proposed new uses. For the requested use on tropical fruits, the acute LOC for 20 gram non-listed avian species eating short grass is exceeded. The acute LOC for non-listed birds is not exceeded for any of the other food categories or bird weight classes for any of the proposed uses. The acute restricted use LOC is exceeded for tropical fruits with 20 g birds eating tall grass, broadleaf plants and small insects and 100 g birds eating short grass. It is also exceeded for the other uses with 20 g birds eating short grass, broadleaf plants and small insects and with 1000 g birds eating short grass. It is also exceeded for the other uses with 20 g birds eating tall grass, broadleaf plants and small insects and with 100 g birds eating short grass. Not seen in these tables, but having the same LOC exceedences are artichokes (0.1 lb a.i./A, 6 applications/season) and fruiting vegetables and other crops (0.125 lb a.i./A, 4 applications/season with a 14-day interval; see Appendix G). The acute dose-based RQs for birds that exceed the LOCs range from 0.10 to 0.70.

The subacute dietary LC₅₀ for birds is greater than the highest concentration/dose tested in each study. Therefore, no risk quotients are presented. The potential for acute dietary-based risk to birds is discussed further in the Risk Description section.

Table 37.	Table 37. T-REX Tropical Fruits Rally 40WSP/Nova 40W 0.25 lb a.i./A; 8 applications/season Upper Bound Kenaga Acute Avian Dose-Based Risk Quotients										
	EECs and RQs										
Size Class (grams)	Adjusted LD50	Short	Grass	Se	Fruits/Pods/ Seeds/ Large Insects						
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ		
20	358.77	251.50	0.701,2	115.27	0.32	141.47	0.39	15.72	0.04		
100	456.74	143.41	0.31	65.73	0.14	80.67	0.18	8.96	0.02		
1000	645.16	64.21	0.10	29.43	0.05	36.12	0.06	4.01	0.01		

 $^{^{1}}$ LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

² Bolded values exceed LOC

Table 38.		a.i./A; 4 a	pplicat r Boun	ions/sea d Kenas	son; 1 ga EE	0-Day I Cs	nterva	d	
Size Class (grams)	Adjusted LD50	Short (Grass	Tall G	,	and RQ Broad Plan Small I	lleaf its/	Fruits/Pods/ Seeds/ Large Insects	
20	358.77	EEC 104.05	RQ 0.29 ^{1,2}	EEC 47.69	RQ 0.13	EEC 58.53	RQ 0.16	EEC 6.50	RQ 0.02
100	456.74	59.33	0.29	27.19	0.13	33.38	0.07	3.71	0.02
1000	645.16	26.56	0.04	12.18	0.02	14.94	0.02	1.66	< 0.01

¹LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

Mammals

For mammals, the most sensitive acute endpoint is based on an acute oral study conducted with the mouse. The T-REX terrestrial model estimations utilize acute toxicity values for the rat. Therefore, in order to use the acute mouse study in the model, the acute oral LD_{50} from the mouse study was adjusted with the following equations taken from the T-REX v. 1.3.1 users guide p. 20:

Adjusted mammalian LD₅₀:

$$Adj.NOAEL \ or \ LD_{50} = NOAEL \ or \ LD_{50} \left(\frac{TW}{AW}\right)^{(0.25)}$$

where:

Adj. NOAEL or LD_{50} = adjusted NOAEL or LD_{50} (mg/kg-bw) NOAEL or LD_{50} = endpoint reported from bird study (mg/kg-bw) TW = body weight of tested animal (350g rat) AW = body weight of assessed animal (15g, 35g, 1000g)

TW = 20 g for an adult mouse AW = 350 g for an adult rat

The LD₅₀ from the mouse study is 1360 mg/kg.

² Bolded values exceed LOC

Conversion for T-REX: $1360 \times (20/350)^{0.25} = 1360 \times 0.49 = 665 \text{ mg/kg}$ (this value was used in T-REX).

Table 39 shows that for the proposed application to tropical fruits, the acute endangered species LOC is exceeded for 15 and 35 g mammals eating short grass. The acute LOC for listed mammals is not exceeded for any of the other food categories or mammal weight classes for any of the proposed uses. None of the other acute LOCs are exceeded for any of the proposed uses, including artichokes (0.1 lb a.i./A, 6 applications/season) and fruiting vegetables and other crops (0.125 lb a.i./A, 4 applications/season with a 14-day interval (see Appendix G for detailed tables for all uses). The acute dose-based RQs for mammals that exceed the acute LOC for listed species are 0.12 and 0.14 for 15 and 35 g mammals, respectively (Tables 39 and 40).

Table 39.	T-REX Trop		lb a.i Upp	A; 8 a er Bot	pplica and K	itions/se enaga	ason	tients ¹				
Size Class (grams)	Adjusted LD50 ²	Short (Grass	Tall C		EECs ar Broad Plan Small I	leaf ts/	Fruits/ Seed Lar Inse	ds/ ge	Granivore		
		EEC	RQ ¹	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	
15	1461.56	210.54	0.14	96.50	0.07	118.43	0.08	13.16	0.01	2.92	< 0.01	
35	1182.56	145.51	0.12	66.69	0.06	81.85	0.07	9.09	0.01	2.02	< 0.01	
1000	511.49	33.74	0.07	15.46	0.03	18.98	0.04	2.11	0.01	0.47	< 0.01	

LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

³ Bolded values exceed the LOC

Table 40.	Fruiting Veg 0.125 lb	a.i./A. U	; 4 ap _] pper	plicatio Bound	ns/se Kena		0-Day Cs	Interv			
Size Class	Adjusted	Short		Tall C	3	EECs a Broad Plan	nd Rolleaf	Qs Fruits	/Pods/	Gran	ivore
(grams)	LDSV	EEC	RO ¹	EEC	RQ	Inse EEC		Large EEC	Large Insects		RQ
15	1461.56	87.10	0.06	39.92	0.03	49.00	0.03	5.44	RQ <0.01	1.21	<0.01
35	1182.56	60.20	0.05	27.59	0.02	33.86	0.03	3.76	<0.01	0.84	<0.01
1000	511.49	13.96	0.03	6.40	0.01	7.85	0.02	0.87	< 0.01	0.19	<0.01

 $^{^{1}}LOC$ for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

² LD₅₀ based on acute toxicity study on the mouse, most sensitive species

(2) Risk Following Chronic Exposure

Birds

Tables 41 and 42 summarize the avian chronic dietary RQs for selected proposed myclobutanil uses. None of the RQs exceed the chronic LOC for birds for any of the proposed uses (see Appendix G for detailed tables). Therefore, risk to birds following chronic exposure to myclobutanil from these uses is not expected.

	F-REX Trop lb a.i./A; 8		•			enaga		
	Chr	onie Avian		ased R Cs and	4	ients		
NOAEC	Short Grass		Tall (Grass	Broadleaf Plants/ Small Insects		Fruits/I Seed Large I	s/
(ppm)	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
256	220.82	0.86	101.21	0.40	124.21	0.49	13.80	0.05

Size class not used for dietary risk quotients

¹LOC for chronic risk = 1

0.	. Fruiting 125 lb a.i. pper Bou	$/A; \overline{4}$ aj	oplicati	ons/sea				140W
	Chroni	e Avian			d Risk d RQs ¹		nts	
NOAEC	Short (Short Grass Tall Grass				dleaf nts/ Insects	Fruits/Pods/ Seeds/ Large Insects	
(ppm)	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
256	91.36	0.36	41.87	0.16	51.39	0.20	5.71	0.02

Size class not used for dietary risk quotients

Mammals

Tables 43 and 44 summarize the mammalian chronic dietary and dose-based RQs for selected proposed myclobutanil uses. The chronic LOC for mammals is exceeded on a dietary bases for the proposed tropical fruit uses for mammals eating short grass (RQ = 1.10). The chronic LOC for mammals on a dietary basis is not exceeded for any of the other food categories

¹LOC for chronic risk = 1

for tropical fruit or for any of the other proposed uses (see Appendix G for detailed tables on all uses). On a dose-basis, the chronic LOC for mammals is exceeded for all proposed uses in some food categories. It is exceeded for all weight classes for all uses for mammals eating short grass. For the tropical fruit use, the chronic LOC is exceeded for all weight classes for tall grass, broadleaf plants and small insects. For all other uses, it is exceeded for tall grass (15 g mammals) and for broadleaf plants and small insects (15 and 35 g mammals). The chronic LOC is not exceeded for the remainder of the food categories or weight classes for all uses (see Appendix G for detailed tables for all uses).

Table 43, T-RI 0.25 lb a			Rally 40W ns/season, U			naga		
GENERAL CONTRACTOR	Chronic	Mamma	lian Dietary			iotients	10.411.77	
			ER	Cs and	RQs ⁻		<u> </u>	
NOAEC (ppm) ¹	Short (Grass	Tall Gr	ass	Broa Pla Small	nts/	Fruits/Pods/ Seeds/ Large Insects	s/
	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
200	220.82	1.102	101.21	0.51	124.21	0.62	13.80	0.07

Size class not used for dietary risk quotients	Size clas	s not used	for dietar	y risk o	quotients
--	-----------	------------	------------	----------	-----------

		Chron	ic Mai	mmalia	n Dos		Risk Que	otients	1		
Size Class (grams)	Adjusted NOAEL	Short	Grass	Tall C	Frass		af Plants/ Insects	See	/Pods/ eds/ Insects	Gran	ivore
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	35.17	210.54	5.99	96.50	2.74	118.43	3.37	13.16	0.37	2.92	0.08
35	28.45	145.51	5.11	66.69	2.34	81.85	2.88	9.09	0.32	2.02	0.07
1000	12.31	33.74	2.74	15.46	1.26	18.98	1.54	2.11	0.17	0.47	0.04

¹LOC for chronic risk = 1

² Bolded values exceed LOC

Table 44. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lb a.i./A; 4 applications/season; 10-Day Interval Upper Bound Kenaga EECs

Chronic Mammalian Dietary Based Risk Quotients												
	EECs and RQs ¹											
NOAEC ¹ (ppm)	Short	Grass	Tall Grass		Broadleaf Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects					
	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ				
200	91.36	0.46	41.87	0.21	51.39	0.26	5.71	0.03				

Size class not used for dietary risk quotients

	Chronic Mammalian Dose-Based Risk Quotients										
			EECs and RQs								
Size Class (grams)	Adjusted NOAEL	Short	Grass	Broadleaf Tall Grass Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects		Granivore			
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	35.17	87.10	2.48 ²	39.92	1.14	49.00	1.39	5.44	0.15	1.21	0.03
35	28.45	60.20	2.12	27.59	0.97	33.86	1.19	3.76	0.13	0.84	0.03
1000	12.31	13.96	1.13	6.40	0.52	7.85	0.64	0.87	0.07	0.19	0.02

¹LOC for chronic risk = 1

b. Terrestrial Plants

Risks to terrestrial plants could not be estimated because no data are available.

B. Risk Description

The risk hypothesis states that for the proposed uses of the fungicide, myclobutanil has the potential to compromise survival, reproduction and/or growth of non-target aquatic and terrestrial animals and plants, including Federally-listed endangered and threatened species. Based on the available ecotoxicity data and predicted environmental exposures, this ecological risk assessment supports the presumption of acute risk to freshwater fish, marine/estuarine invertebrates, birds and mammals and chronic risk to mammals. The presumption of acute risk to marine/estuarine fish, freshwater invertebrates, aquatic non-vascular plants and chronic risk to freshwater and marine/estuarine fish and birds is not supported by the results of this screening risk assessment. The presumption of acute risk to vascular plants and chronic risk to aquatic invertebrates could not be determined in this risk assessment due to the lack of usable toxicity data. More details on the risk conclusions can be found in the following pages.

² Bolded values exceed LOC

1. Risk to Aquatic Animals and Plants

a. Aquatic Animals

(1) Risk Following Acute Exposure

Freshwater Fish and Aquatic-Phase Amphibians

As stated previously, the acute LOC for endangered freshwater fish is exceeded for one modeled scenario, LA tropical fruit, for both aerial and ground application when using the most sensitive freshwater fish (bluegill sunfish) endpoint. Although the Louisiana scenario has a very high runoff component and provides a conservative estimate of EECs for the tropical fruit scenario, potential risk to endangered freshwater fish cannot be discounted.

Freshwater Invertebrates

None of the RQs exceed the acute LOC for freshwater invertebrates for any of the proposed uses. Therefore, risk to freshwater invertebrates following acute exposure to myclobutanil from these uses is not expected.

Marine/Estuarine Fish

None of the RQs exceed the acute LOC for estuarine/marine fish for any of the proposed uses. Therefore, risk to estuarine/marine fish following acute exposure to myclobutanil from these uses is not expected.

Marine/Estuarine Invertebrates

Acute risk to mollusks is expected with the proposed uses on tropical fruit (LA and PR) and CA lettuce scenarios with either aerial or ground applications. It is not expected with other proposed uses, including the tropical fruit scenario in California. It is also anticipated that the proposed use will be around or near estuarine/marine ecosystems. The probabilities of effect on individual eastern oysters are estimated in section IV B 5 b (2) of this document. It is noted that the probabilities of effects on an individual associated with the minimum and maximum calculated RQ values for the acute eastern oyster study are 1 in 6.9E+04 and 2.4E+01, respectively. The corresponding estimate chance of an effect on an individual associated with the listed marine/estuarine invertebrate species LOC is 1 in 3.1E+02.

For crustaceans, all of the acute aquatic LOCs are exceeded for tropical fruit (LA), both aerial and ground applications. The acute restricted use aquatic LOC is exceeded for lettuce (CA, aerial and ground) and tropical fruit (PR, aerial and ground). The acute endangered species aquatic LOC is exceeded for all uses except okra (CA, aerial and ground) and tropical fruit (FL and CA, ground). Again, it is anticipated that the proposed uses will be around or near

estuarine/marine ecosystems. For crustaceans, based on the available laboratory study, the probability of an individual mortality associated with the minimum and maximum calculated RQ values for mysid are 1 in 1.2E+37 and 1 in 1.26E+02, respectively. The corresponding estimate chance of an individual mortality associated with the listed marine/estuarine invertebrate species LOC is 1 in 2.4E+16.

(2) Risk Following Chronic Exposure

Freshwater Fish and Aquatic-Phase Amphibians

None of the RQs exceed the chronic LOC for freshwater fish for any of the proposed uses. Therefore, risk to freshwater fish following chronic exposure to myclobutanil from these uses is not expected.

Freshwater Invertebrates

No data are available for freshwater invertebrates. Therefore, a quantitative assessment of risk was not conducted. This does not preclude potential risk to these taxonomic groups.

Marine/Estuarine Fish

None of the RQs exceed the chronic LOC for estuarine/marine fish for any of the proposed uses. Therefore, risk to estuarine/marine fish following chronic exposure to myclobutanil from these uses is not expected. The chronic toxicity value for marine/estuarine fish was estimated using an acute to chronic ratio with acute studies with freshwater and marine/estuarine fish and a chronic study with freshwater fish. Therefore, there is uncertainty associated with the chronic toxicity value for marine/estuarine fish. The acute toxicity value for marine/estuarine fish exposed to myclobutanil is half of the acute toxicity value for freshwater fish. The RQ for freshwater fish following chronic exposure is 1/10 of the chronic LOC for fish. Therefore, it is anticipated that the chronic RQ for marine/estuarine fish will not exceed the chronic LOC for aquatic organisms.

Marine/Estuarine Invertebrates

No data are available for marine/estuarine invertebrates. Therefore, a quantitative assessment of risk was not conducted. This does not preclude potential risk to these taxa, especially since there are risks following acute exposure.

b. Aquatic Plants

None of the RQs exceed the LOC for aquatic non-vascular plants for any of the proposed uses. Therefore, risk to non-vascular plants following exposure to myclobutanil from these uses is not expected. No data are available for vascular aquatic plants. Therefore, a quantitative

Page 58 of 88

assessment of risk was not conducted. This does not preclude a potential risk to this taxonomic group.

2. Risk to Terrestrial Animals and Plants

a. Terrestrial Animals

Some of the labels specify that the application rate is seasonal. Terrestrial exposures were estimated assuming that myclobutanil is applied to one crop per year. For some crops, such as green leafy vegetables, there may be two or more crop production seasons per year. In these cases, the predicted terrestrial exposures from the T-REX model may not be sufficiently conservative and the estimated RQs may actually be higher. The application interval between seasons is not known. In addition, the foliar dissipation rate and the residue decline data for the technical material are not clear. The available studies are not sufficient for estimating a foliar half-life or foliar dissipation rate for myclobutanil. Nevertheless, for the purpose of risk description, terrestrial exposure was modeled with several foliar dissipation and/or residue decline rates. At this time, the T-REX model cannot accurately estimate terrestrial exposure levels with pesticides applied with varying application rates and application intervals. The technology is not yet available for these types of estimations.

(1) Risk Following Acute Exposure

Birds

As shown in the risk estimation section, the acute dose-based LOC is exceeded for birds in several categories for all proposed new uses with acute dose-based RQs for birds ranging from 0.10 to 0.70. Tables 45 and 46 show that even with mean Kenaga EEC values, the acute LOC for endangered birds is exceeded for 20 and 100 g birds eating short grass (tropical fruits) and 20 g birds eating short grass (fruiting vegetables and other crops with 10-day application interval). In one case (20 g birds eating short grass for tropical fruits), the acute LOC for restricted use is exceeded. With mean Kenaga values, the acute dose-based RQs for birds do not exceed the acute LOCs with the proposed use for fruiting vegetables and other crops (14-day application interval) and artichokes (see Appendix G).

Table 45. T-REX Tropical Fruits Rally 40WSP/Nova 40W 0.25 lb a.i./A; 8 applications/season Mean Kenaga EECs									
Acute Avian Dose-Based Risk Quotients									
	EECs and RQs								
1	Adjusted LD50	Short Grass		Tall Grass		Broadleaf Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects	
		EEC	RQ	EEC	RQ	EEC RQ		EEC	RQ
20_	358.77	89.16	0.249	37.76	0.11	47.20	0.132	7.34	0.020
100	456.74	50.84	0.111	21.53	0.05	26.91	0.059	4.19	0.009
1000	645.16	22.68	0.035	9.61	0.06	12.01	0.019	1.87	0.003

 $^{^{1}}LOC$ for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

² Bolded values exceed LOC

	T-REX Fruiti 25 lb a.i./A; 4	applicatio	ns/seaso Mean K	on; 10-I enaga I	Day Âp EECs	plicatio	n Inter			
	Acute Avian Dose-Based Risk Quotients EECs and ROs									
Size Class (grams)	Adjusted LD50	Short Grass		Tall Grass		Broadleaf Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects		
		EEC	RQ ^{1,2}	EEC	RQ	EEC	RQ	EEC	RQ	
20	358.77	36.89	0.103	15.62	0.044	19.53	0.054	3.04	0.008	
100	456.74	21.03	0.046	8.91	0.020	11.13	0.024	1.73	0.004	
1000	645.16	9.38	0.015	3.97	0.006	4.97	0.008	0.77	0.001	

¹LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

Even if the half-life of myclobutanil is decreased from the default of 35 days to 2 days, the acute LOC for listed species is still exceeded for short grass, broadleaf plants and small insects for 20 g birds (tropical fruit) and short grass for 20 g birds (fruiting vegetables and other crops) with an RQ range of 0.1 to 0.19.

As stated previously, acute RQs were not estimated because the LC₅₀'s for the subacute dietary bird studies were greater than the highest concentration tested. A comparison of the lowest LC₅₀ (4090 ppm) with the highest terrestrial EEC from T-REX (220.82 ppm; Tables 18a, 18b, 41) shows that the LC₅₀ is greater than 18.5 times the maximum acute terrestrial EEC (tropical fruit). The acute LOC for listed species is 0.1. The ratio of the highest EEC to the Page 60 of 88

² Bolded values exceed LOC

lowest LC₅₀ is less than 0.054. Therefore, acute dietary risk to listed avian species is not expected.

As discussed above, the acute dose-based LOC is exceeded for birds in several categories for all proposed new uses. For the purpose of this screening level assessment, the more conservative RQs (in this case, dose-based) are used to estimate risk. In this assessment, it appears that the potential risk from a single acute oral dose basis is considerably greater than potential risk from a subacute dietary basis. This is likely due in part to the inherent uncertainties associated with the two acute/subacute toxicity tests. Refer to the Assumptions, Limitations and Uncertainties Section IV.C.3.c.: Dietary Intake and Other Limitations of Oral Studies in Terrestrial Species for a more complete discussion of the uncertainties associated with these two avian studies.

Mammals

As stated in the risk estimation section, the acute dose-based RQ's exceed the endangered species LOC for mammals (short grass; 15 and 35 g birds, RQs = 0.12 and 0.14, respectively) with the proposed tropical fruit use. None of the other uses exceed any acute LOCs for mammals. With mean Kenaga EECs, the acute dose based RQs do not exceed any acute LOCs for mammals.

Terrestrial invertebrates

Quantitation of risk to terrestrial invertebrates has not been officially incorporated into the assessment of risk to terrestrial animals. It appears that the risk to terrestrial invertebrates may be low; however, a definitive study has not been submitted. There are some data on honey bees; however, the test material is applied as a dust, which is not the usual test protocol. An official review of the data is not available and it is not known whether or not this study is acceptable for use in describing risk. These data indicate that myclobutanil (81.1%) technical may not be toxic to honey bees at a dosage of 100µg/bee.

(2) Risk Following Chronic Exposure

Birds

None of the RQs exceed the chronic LOC for birds for any of the proposed uses. Based on the EECs from the parent only, risk to birds following chronic exposure to myclobutanil from these uses is not expected.

A conservative estimate of the potential additional risk from the degradate may be conducted by adding the maximum percentage of degradate that may be formed in foliage following myclobutanil application to the estimated residues of the parent. Refinement of these estimates are beyond the capabilities of the T-REX model at this time. In a memorandum from Michael Doherty et al. to Tamue Gibson/Cynthia Giles-Parker: 1,2,4-Triazole, Triazole Alanine, Triazole Acetic Acid: Human Health Aggregate Risk Assessment in Support of Reregistration

and Registration Actions for Triazole-derivative Fungicide Compounds and dated February 7, 2006 (DP # 322215), "residue levels of 1,2,4-triazole were estimated from parent triazole-derivative fungicide tolerances. For each food/parent fungicide tolerance combination, a residue estimate was calculated by multiplying the tolerance by a metabolic conversion factor and by a molecular weight conversion factor. Direct-exposure residue levels used the metabolic factors from plant metabolism studies for crop commodities and from livestock metabolism studies for livestock commodities...For some compounds metabolic conversion factors were not readily available and the maximum factors from the entire class of compounds were used (20% for plants...77% for livestock)." Using the 20% estimate factor from plants and adding that 20% onto the estimated RQs for the parent, the RQ for short grass (tropical fruit application) exceeds the chronic avian LOC of 1 when combining the residues from the parent with potential maximum residues from the 1,2,4-triazole degradate. The RQ will be 1.03. The chronic EEC for short grass (tropical fruits) is 220.82. For birds, the EEC would have to be less than 204.8 ppm in order for the chronic LOC to not be exceeded.

Mammals

As stated in the risk estimation section, the chronic dietary-based RQ for mammals eating short grass exceeds the chronic LOC for the proposed tropical fruit uses (RQ = 1.10); however, on a dietary basis, the chronic LOC is not exceeded for any of the other uses. The chronic dose-based RQs exceed the chronic LOC for mammals eating short grass with all uses for all weight classes. For the tropical fruit use, the chronic dose-based RQs exceed the chronic LOC for all weight classes for tall grass, broadleaf plants and small insects. For all other uses, it is exceeded only for tall grass (15 g mammals) and for broadleaf plants and small insects (15 and 35 g mammals). With mean Kenaga values, the chronic LOC for mammals is not exceeded on a dietary basis for any of the proposed uses. On a dose-basis, the chronic LOC is exceeded for the tropical fruit use for 15 and 35 g mammals eating short grass. It is not exceeded with any of the other uses.

Although residue decline/foliar dissipation data have been submitted for myclobutanil, many of these studies are not acceptable and as stated previously, it is unclear as to whether or not these studies provide sufficient data to provide a foliar half-life for use in the terrestrial exposure model, T-REX (Version 1.3.1). Therefore, estimations of risk were conducted with various half-lives for myclobutanil on foliage for risk description purposes. Even with a foliar dissipation/residue decline half-life of 2 days for myclobutanil, the chronic LOC is still exceeded with tropical fruit uses for 15 and 35 g mammals eating short grass (RQs = 1.64 and 1.4 for 15 and 35 g mammals, respectively using the maximum Kenaga values). For fruiting vegetables (10-day interval), the chronic dose-based RQ for short grass exceeds the chronic mammalian LOC when the half-life exceeds 4 days. For fruiting vegetables (14-day interval), the same is true when the half-life exceeds 5 days and for artichokes, again, the same is true when the half-life is less than 5 days for fruiting vegetables and less than 9 days for artichokes. Therefore, risk is expected for mammals following chronic exposure for all uses, especially if the half-life for myclobutanil on foliage exceeds 5-9 days, depending upon the crop and application interval.

It is noted that the labels provide application rates per season. It is expected that some green leafy vegetables will have 2 or more seasons. If the application rates and intervals remain the same, even between plantings, then the risk is expected to be higher for those crops; however, this remains an uncertainty because the current version of the T-REX model can only accommodate uniform application intervals.

As stated earlier, a reproduction study in mammals on the 1,2,4-triazole degradate indicates that the degradate is equally toxic as the parent on a chronic exposure basis. For the parent, the reproductive NOAEL is 16 mg/kg/day and the LOAEL is 80 mg/kg/day based on testicular, epididymal and prostatic atrophy in P2 males; slight increase in stillborns, decrease in body weight gain in pups during lactation in F1 and F2 generations. For the degradate, the reproductive NOAEL is 15 mg/kg/day and the LOAEL is 31 mg/kg/day based on abnormal sperm and a decrease in the number of corpora lutea in F1 females. At 218 mg/kg/day, there was reproductive failure (no viable offspring). Using the 20% estimate factor from plants and adding that 20% onto the estimated RQs for the parent (see discussion in chronic risks to birds section, just above the mammalian section), the following summarizes any additional RQs that exceed the chronic mammalian LOC when combining the residues from the parent with potential maximum residues from the 1,2,4-triazole degradate:

For tropical fruit, no additional RQs will exceed the chronic mammalian LOC. For leafy greens, with the 10- day application interval, the broadleaf plants and small insects food category for 1000 g mammals (dose-based) will exceed the LOC; however, with the 14-day interval, the RQ for this food category and mammalian weight class will not exceed the LOC. Fruiting vegetables (both the 10- and 14-day application intervals) and artichoke uses will exceed the food category, tall grass for the 35 gram mammalian weight category. No other RQs for any of the proposed uses exceed the chronic mammalian LOC with the estimated maximum combined residues of the parent and the 1,2,4-triazole degradate on foliage.

b. Terrestrial Plants

Quantitative risk to terrestrial plants was not estimated because no data are available. This does not preclude potential risk to these taxonomic groups, especially in light of the incidence reports on damage to plants (see below).

3. Review of Incident Data

Three incident reports were filed for myclobutanil between 1994 and 2003, all with effects on terrestrial plants (two incidents with grapes and one with roses). The two incidents with grapes occurred in California and the one with roses was reported in Maryland. The certainty index for the damage in all 3 incidents was rated as possibly related to exposure to myclobutanil. The two incidents with grapes involved application of other pesticides as well as the myclobutanil. Therefore, it is not definitively known whether or not the effects were due to exposure to myclobutanil in these two incidents. Myclobutanil was the only pesticide applied to the rose bushes in the third reported incident.

a. Incidents Involving Aquatic Organisms

No incidents involving aquatic organisms were reported.

b. Incidents Involving Terrestrial Organisms

(1) Animals

No incidents involving terrestrial animals were reported.

(2) Plants

Incident 1: Rally 40W (myclobutanil), Pro Gibb (gibberellic acid), dimethogan 25 WP, Pro Kil Cryolite 96 (sodium fluoaluminate), Britz binder and Booster 42 Foliar Spray (polymeric polyhydroxy acids) were applied by ground application to grape vines. Shortly after the last application, scarring of the berries, stunted vine growth, lack of berry size increase, dieback of fruit from total bunches and limited cone growth with straggly branches were observed. No residue analysis was conducted. The California Commissioner's report indicated that mixtures of Pro-Gibb 4% and Pro-Kil Cryolite 96 may cause some compatibility problems. No specific data on terrestrial plants were found in the Agency files for any of the pesticides applied on this incident.

Incident 2: It was reported that Rally 40W damaged 6 acres of Red Globe and Thompson's grapes to the point that they could not be sold. Burns and necrosis on bunches (Red Globe) and leaf burn (Thompson's) were observed. Agri-MEK (abamectin) and Ad-Wet were also applied, using a ground spray on the vineyard. Again, no specific data on terrestrial plants were found in the Agency files for any of the pesticides applied on this incident.

Incident 3: Systhane (myclobutanil) was applied via a broadcast spray to rose bushes grown in greenhouses by local residents in Maryland. The total magnitude was 200 houses. Foliar necrosis and some defoliation were observed after exposure to systhane. Damage varied from house to house and by rose variety.

4. Endocrine Effects

Under the Federal Food, Drug and Cosmetic Act (FFDCA), as amended by the Food Quality Protection Act (FQPA), EPA is required to develop a screening program to determine whether certain substances (including all pesticide active and other ingredients) "may have an effect in humans that is similar to an effect produced by a naturally-occurring estrogen, or other such endocrine effects as the Administrator may designate." Following the recommendations of its Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC), EPA determined that there was scientific basis for including, as part of the program, the androgen- and thyroid hormone systems, in addition to the estrogen hormone system. EPA also adopted

Page 64 of 88

EDSTAC's recommendation that the Program include evaluations of potential effects in wildlife. For pesticide chemicals, EPA will use FIFRA, to the extent that effects in wildlife may help determine whether a substance may have an effect in humans, and the FFDCA authority to require the wildlife evaluations. As the science develops and the resources allow, screening of additional hormone systems may be added to the Endocrine Disruptor Screening Program (EDSP). When the appropriate screening and or testing protocols being considered under the Agency's Endocrine Disruptor Screening Program have been developed, myclobutanil may be subjected to additional screening and or testing to better characterize effects related to endocrine disruption.

At this time, there are no indications that myclobutanil would be a candidate for additional testing for endocrine effects.

5. Federally Threatened and Endangered (Listed) Species Concerns

Section 7 of the Endangered Species Act, 16 U.S.C. Section 1536(a)(2), requires all federal agencies to consult with the National Marine Fisheries Service (NMFS) for marine and anadromous listed species, or the United States Fish and Wildlife Services (FWS) for listed wildlife and freshwater organisms, if they are proposing an "action" that may affect listed species or their designated habitat. Each federal agency is required under the Act to insure that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of a listed species or result in the destruction or adverse modification of designated critical habitat. To jeopardize the continued existence of a listed species means "to engage in an action that reasonably would be expected, directly or indirectly, to reduce appreciably the likelihood of both the survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of the species" (50 C.F.R. § 402.02).

To facilitate compliance with the requirements of the Endangered Species Act (subsection (a)(2)), the Office of Pesticide Programs has established procedures to evaluate whether a proposed registration action may directly or indirectly reduce appreciably the likelihood of both the survival and recovery of a listed species in the wild by reducing the reproduction, numbers, or distribution of any listed species (USEPA, 2004). After the Agency's screening level risk assessment is conducted, if any of the Agency's listed species LOCs are exceeded for either direct or indirect effects, an analysis is conducted to determine if any listed or candidate species may co-occur in the area of the proposed pesticide use or areas downstream or downwind that could be contaminated from drift or runoff/erosion. If listed or candidate species may be present in the proposed action areas, further biological assessment is undertaken. The extent to which listed species may be at risk then determines the need for the development of a more comprehensive consultation package as required by the Endangered Species Act.

Both acute endangered species and chronic risk LOCs are considered in the screening-level risk assessment of pesticide risks to listed species. Endangered species acute LOCs are a fraction of the non-endangered species LOCs or, in the case of endangered plants, RQs are derived using lower toxicity endpoints than non-endangered plants. Therefore, concerns

regarding listed species within a taxonomic group are triggered in exposure situations where restricted use or acute risk LOCs are triggered for the same taxonomic group. The risk assessment also includes an evaluation of the potential probability of individual effects for exposures that may occur at the established endangered species LOC both in the risk characterization and the endangered species sections. This probability is calculated using the established dose/response relationship and assumes a probit (probability unit) dose/response relationship. This analysis is presented in Section IV.b.5.b(2) below.

The federal action addressed herein are the Section 3 New Uses for the pesticide product, myclobutanil, which is a fungicide. Myclobutanil is proposed to be used on fruiting vegetables (crop group 8 except tomatoes), leafy vegetables (crop subgroup 4A except spinach), tropical fruits, peppers and eggplant, artichoke, head and leaf lettuce, okra and cilantro.

a. Action Area

For listed species assessments, the action area is considered to be the area affected directly or indirectly by the Federal action and not merely the immediate area where myclobutanil is applied. At the initial Level 1 screening assessment, broadly described taxonomic groups are considered, and thus, conservatively assumes that listed species within those broad groups are co-located with the pesticide treatment area. This means that terrestrial plants and wildlife are assumed to be located on or adjacent to the treated site and aquatic organisms are assumed to be located in a surface water body adjacent to the treated site. The assessment also assumes that listed species are located within the area of highest exposure to the pesticide, and that exposure will decrease with increasing distance from the treated area.

If the assumptions associated with the screening-level action area result in RQs that are below the listed species LOCs, a "no effect" determination conclusion is made with respect to listed species in that taxa, and no further refinement of the action area is necessary. Furthermore, RQs below the listed species LOCs for a given taxonomic group indicate no concern for indirect effects upon listed species that depend upon the taxonomic group covered by the RQ as a resource. However, in situations where the screening assumptions lead to RQs in excess of the listed species LOCs for a given taxonomic group, a potential for a "may affect" conclusion exists and may be associated with direct effects on listed species belonging to that taxonomic group or may extend to indirect effects upon listed species that depend upon that taxonomic group as a resource. In such cases, additional information on the biology of listed species, the locations of these species, and the locations of use sites and could be considered along with available information on the fate and transport properties of the pesticide to determine the extent to which screening assumptions regarding an action area apply to a particular listed organism. These subsequent refinement steps could consider how this information would impact the action area for a particular listed organism and may potentially include areas of exposure that are downwind and downstream of the pesticide use site.

b. Taxonomic Groups Potentially at Risk

The preliminary risk assessment for endangered species indicates that myclobutanil exceeds the Endangered Species LOCs for the specified use scenario for the following taxonomic groups:

- Acute exposure to birds at the maximum application rate by ground and aerial spray application with the following uses: tropical fruits, fruiting vegetables and other crops with the same application rates and intervals and artichokes
- Acute exposure to mammals at the maximum application rate by ground and aerial spray application with the following uses: tropical fruits
- Chronic exposure to mammals at the maximum application rate by ground and aerial spray application with all of the proposed uses
- Acute exposure to marine/estuarine invertebrates by ground and aerial spray application

Concerns For Federally Listed as Endangered and/or Threatened Species

Table 47. Listed Species Risks Associa Use	ted With Direct or Indirect E	ffects from Myclobutanil
Listed Taxon	Direct Effects	Indirect Effects
Terrestrial and semi-aquatic plants - monocots	No data are available	Yes through effects to pollinators (mammals, birds, reptiles, terrestrial-phase amphibians)
Terrestrial and semi-aquatic plants – dicots	No data are available	Yes through effects to pollinators (mammals, birds, reptiles, terrestrial-phase amphibians)
Terrestrial invertebrates	No	No
Birds	Yes	Yes through effects to mammals, freshwater fish, birds and estuarine/marine invertebrates
Terrestrial-phase amphibians	Yes¹	Yes through effects to mammals, freshwater fish, birds and estuarine/marine invertebrates
Reptiles	Yes ¹	Yes through effects to mammals, freshwater fish, birds and estuarine/marine invertebrates
Mammals	Yes following acute and chronic exposure	Yes through effects to birds, freshwater fish, mammals and estuarine/marine invertebrates
Aquatic non-vascular plants	No	No
Aquatic vascular plants	No data are available	No
Freshwater fish	Yes	Yes through effects to freshwater fish and aquatic amphibians
Aquatic-phase amphibians	Yes ²	Yes through effects to freshwater fish and aquatic amphibians
Freshwater invertebrates	No (no chronic data available)	Yes through effects to freshwater fish and aquatic amphibians

Table 47. Listed Species Risks Associated With Direct or Indirect Effects from Myclobutanil Use							
Listed Taxon	Direct Effects	Indirect Effects					
Mollusks	No (no chronic data available)	Yes through effects to freshwater fish and aquatic amphibians					
Marine/estuarine fish	No (extrapolated chronic value from freshwater fish)	Yes from marine/estuarine invertebrates					
Marine/estuarine invertebrates	Yes following acute exposure (no chronic data available)	Yes from marine/estuarine invertebrates					

Results from avian species used as surrogate for assessing risk to terrestrial-phase amphibians and reptiles.

(1) Discussion of Risk Quotients

The Agency's LOCs for birds, mammals and marine/estuarine invertebrates are exceeded for the uses of myclobutanil as outlined in previous sections. Should estimated exposure levels occur in proximity to listed resources, the available screening level information suggests a potential concern for direct effects on listed species within these taxonomic groups listed above associated with the uses of myclobutanil as described in Section III.A. The registrant must provide information on the proximity of Federally listed birds, mammals and marine/estuarine invertebrates to the myclobutanil use sites. This requirement may be satisfied in one of three ways: 1) having membership in the FIFRA Endangered Species Task Force (Pesticide Registration [PR] Notice 2000-2); 2) citing FIFRA Endangered Species Task Force data; or 3) independently producing these data, provided the information is of sufficient quality to meet FIFRA requirements. The information will be used by the OPP Endangered Species Protection Program to develop recommendations to avoid adverse effects to listed species.

(2) Probit Dose Response Relationship

The Agency uses the probit dose response relationship as a tool for providing additional information on the potential for acute direct effects to aquatic and terrestrial animals (U.S. EPA, 2004). As part of the risk characterization, an interpretation of acute RQ for listed species is discussed. This interpretation is presented in terms of the chance of an individual event (i.e., mortality or immobilization) should exposure at the EEC actually occur for a species with sensitivity to myclobutanil on par with the acute toxicity endpoint selected for RQ calculation. To accomplish this interpretation, the Agency uses the slope of the dose response relationship available from the toxicity study used to establish the acute toxicity measures of effect for each taxonomic group that is relevant to this assessment. The individual effects probability associated with the acute RQ is based on the mean estimate of the slope and an assumption of a probit dose response relationship. In addition to a single effects probability estimate based on the mean, upper and lower estimates of the effects probability are also provided to account for variance in the slope, if available. The upper and lower bounds of the effects probability are based on available information on the 95% confidence interval of the slope. Studies with good probit fit characteristics (i.e., statistically appropriate for the data set) are associated with a high degree of confidence. Conversely, a low degree of confidence is associated with data from studies that do

² Results from freshwater fish used as surrogate for assessing risk to aquatic-phase amphibians

not statistically support a probit dose response relationship. In addition, confidence in the data set may be reduced by high variance in the slope (i.e., large 95% confidence intervals), despite good probit fit characteristics. In the event that dose response information is not available to estimate a slope, a default slope assumption of 4.5 (95% C.I.: 2 to 9) (Urban and Cook, 1986) is used.

Individual effect probabilities are calculated based on an Excel spreadsheet tool IECV1.1 (Individual Effect Chance Model Version 1.1) developed by the U.S. EPA, OPP, Environmental Fate and Effects Division (June 22, 2004). The model allows for such calculations by entering the mean slope estimate (and the 95% confidence bounds of that estimate) as the slope parameter for the spreadsheet. In addition, the acute RQ is entered as the desired threshold.

Birds

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute dose-based bird study are 1 in 3E+44 and 1 in 7, respectively. Using the upper confidence interval for the slope, the probability of an individual mortality associated with the minimum and maximum RQ values are 1 in 3E+97 and 1 in 19, respectively. Using the lower confidence interval for the slope, the probabilities are 1 in 7.8E+11 and 1 in 3.4, respectively. The corresponding estimate chance of an individual mortality associated with the listed avian species LOC is 1 in 9.7E+11 with upper and lower estimates of 1 in 4.3E+03 and 1 in 2.3E+25, respectively.

No RQs were estimated for the subacute dietary avian study because the LC_{50} 's were higher than the highest concentration tested. Therefore, the probability of an individual mortality associated with the RQs are not calculated. In addition, no slope is available for the subacute dietary studies. A default slope of 4.5, the highest concentration value tested in the subacute dietary study in the bird and the listed avian species LOC are used to estimate the probability of an individual mortality associated with the listed avian species LOC. The probability of an individual mortality associated with the listed avian species LOC is greater than 1 in 2.9E+05.

Mammals

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute dose-based mammal study, using a default slope of 4.5, are 1 in 1.6E+04 and 1 in 8.9E+18, respectively. The corresponding estimate chance of an individual mortality associated with the listed mammalian species LOC is 1 in 2.9E+05.

Aquatic Animals

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute freshwater fish study, using a default slope of 4.5, are 1 in 8.9E+18 and 1 in 6.66E+09, respectively. The corresponding estimate chance of an individual mortality associated with the listed freshwater fish species LOC is 1 in 4.2E+08.

The probability of an individual mortality associated with both the minimum and maximum calculated RQ values for the acute freshwater invertebrate study is 1 in 1.1E+42. Using the upper confidence interval for the slope, the probability of an individual mortality associated with both the minimum and maximum RQ values is 1 in 5.4E+81. Using the lower confidence interval for the slope, the probability is 1 in 8.3E+15. The corresponding estimate chance of an individual mortality associated with the listed freshwater invertebrate species LOC is 1 in 3.1E+18 with lower and upper estimates of 1 in 2.1E+07 and 1 in 2.4E+35, respectively.

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute marine/estuarine fish study, using a default slope of 4.5, are 1 in 8.9E+18 and 1 in 9.6E+13, respectively. The corresponding estimate chance of an individual mortality associated with the listed marine/estuarine fish species LOC is 1 is 4.2E+08.

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute marine/estuarine invertebrate (eastern oyster) study are 1 in 6.9E+04 and 2.4E+01, respectively. The corresponding estimate chance of an individual mortality associated with the listed marine/estuarine invertebrate species LOC is 1 in 3.1E+02.

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute marine/estuarine invertebrate (mysid) study are 1 in 1.2E+37 and 1 in 1.26E+02, respectively. The corresponding estimate chance of an individual mortality associated with the listed marine/estuarine invertebrate species LOC is 1 in 2.4E+16.

(3) Data Related to Under-represented Taxa

Effects data on under-represented taxonomic groups were not submitted by the Registrant. Effects data from other analyzed sources (ECOTOX Database, PAN Database) were not obtained for this screening risk assessment.

(4) Implications of Sublethal Effects

Acute Studies

For the sublethal effects discussed below, it is noted that EFED cannot quantitatively assess the relationship between any of the observed sublethal effects and potential reduction in survival or reproductive impairment at this time. Instead, the concentrations at which sublethal effects were observed in laboratory studies are discussed in relation to the concentrations at which mortality and/or reproductive effects were observed in the same laboratory studies and compared to aquatic and terrestrial EECs and assessed as to whether or not they may be expected under field conditions.

In bluegill sunfish, mortality was observed at the same concentration levels as the sublethal effects (quiescence and loss of equilibrium) and these were well above the peak aquatic EECs. In rainbow trout, loss of equilibrium, surfacing, and dark coloration were observed at lower concentration levels than those where mortality was observed. However, the concentration levels at which these effects were observed are significantly higher than the estimated aquatic EECs for any of the myclobutanil uses. Therefore, it is not anticipated that sublethal effects will be observed in fish under the conditions of use. The same holds true for aquatic invertebrates (daphnia (settling to the bottom)) and marine/estuarine fish (sheepshead minnows (erratic behavior, darkened pigmentation, lethargy, partial loss of equilibrium and rapid respiration)). In mysids, sublethal effects (lethargy and darkened pigmentation) were observed at the same concentration levels as mortality, and these were observed at concentration levels below the peak aquatic EEC. Therefore, both mortality and sublethal effects are anticipated under the conditions of use.

Terrestrial animals also exhibited sublethal effects in the acute and short-term studies. The NOAEL was not determined for Bobwhite quail. Lethargy, anorexia and mortality were observed at the lowest dietary levels. The highest terrestrial EEC is 14 times lower than the concentration level where sublethal effects (and mortality) would be observed. For mallard ducks, the highest terrestrial EEC is 10 times lower than the concentration level where sublethal effects were observed. Therefore, for birds, sublethal effects following acute exposure are not anticipated for these proposed uses.

For mammals, there was mortality at all dose levels, along with sublethal effects (ataxia, tremors, loss of righting and others). These effects were not dose-related; however, and early deaths may have affected reporting. The lowest dose where sublethal effects were observed was very close to the LD_{50} . The highest RQ is 0.14. Therefore, the terrestrial EEC is 1/0.14 or 7 times lower than the lowest dose level where sublethal effects were observed. Therefore, again, for mammals, sublethal effects following acute exposure is not anticipated for these proposed uses.

Chronic Studies

The NOAEC for the chronic study on freshwater fish is 0.98 mg/L with a LOAEC of 2.2 mg/L. There was total mortality at 8.5 mg/L. The chronic RQ for freshwater fish is 0.1, based on the NOAEC of 0.98 and the highest estimated aquatic EEC. The chronic LOC is 1. Therefore, any sublethal effects observed in the chronic fish study would be protected with the NOAEC from the study.

No effects were observed in the chronic reproduction studies in birds.

In mammals, a 2-generation reproduction study was conducted in rats at the following concentration levels: 0, 50, 200 or 1000 ppm. At 200 and 1000 ppm, centrilobular hepatocellular hypertrophy and an increase in liver weights were observed. Also at 1000 ppm, an increase in the number of stillborn/% born dead in both generations, multifocal/diffuse

testicular atrophy, necrotic spermatocytes/spermatids/decreased spermatozoa, atrophy of the prostate, and a decrease in pup weight gain during lactation were observed. The NOAEC selected for assessing chronic risk to mammals is 200 ppm based on the effects related to reproduction. The sublethal effect, centrilobular hypertrophy is not protected by the use of the 200 ppm NOAEC; however, in this particular case, this effect is probably not a significant toxicological effect. In a longer term study at this concentration level (2-year rat study, MRID 00165247), liver mixed function oxidase activity was significantly increased at 3 months, but not after that time. Even at higher concentration levels, similar effects were noted, but no significant toxicological effects were found in the liver following chronic exposure.

c. Indirect Effects Analysis

In conducting a screen for indirect effects, direct effects LOCs for each taxonomic group are used to make inferences concerning the potential for indirect effects upon listed species that rely upon non-listed organisms in these taxonomic groups as resources critical to their life cycle. Pesticide-use scenarios, resulting in RQs that are below all direct effect listed species LOCs for all taxonomic groups assessed are considered of no concern for risks to listed species either by direct or indirect effects. However, there may be situations where a taxonomic group is not quantitatively assessed (e.g., terrestrial insects), but other lines of evidence are sufficiently supportive of concerns for indirect effects on listed organisms that are dependant upon that taxonomic group.

Where One or More Animal Taxonomic Group RQs Exceed the LOC for Listed Species

The Level I screening indirect effects analysis documents those types of dependencies upon non-listed organisms that could be important sources of indirect effects to listed organisms should effective levels of the pesticide coincide with locations of listed species and the biologically based resources upon which they depend. In cases where screening-level acute RQs for a given animal group equal or exceed the endangered species acute LOC, the Agency uses the dose response relationship from the toxicity study used for calculating the RQ to estimate the probability of acute effects associated with an exposure equivalent to the EEC. This information serves as a guide to establish the need for and extent of additional analysis that may be performed using Services-provided "species profiles" as well as evaluations of the geographical and temporal nature of the exposure to ascertain if a not likely to adversely affect determination can be made. The degree to which additional analyses are performed is commensurate with the predicted probability of adverse effects from the comparison of dose response information with the EECs. The greater the probability that exposures will produce effects on a taxa, the greater the concern for potential indirect effects for listed species dependant upon that taxa, and therefore, the more intensive the analysis on the potential listed species of concern, their locations relative to the use site, and information regarding the use scenario (e.g., timing, frequency, and geographical extent of pesticide application). The greatest concerns would exist when exposure is associated with a risk higher than the effects probability associated with the non-endangered LOC for a pesticide with an average slope of 4.5.

For myclobutanil, risks are predicted for marine/estuarine invertebrates, birds, and mammals. Effects on marine/estuarine invertebrate survival or reproduction could affect other groups which feed on invertebrates (*i.e.*, other invertebrates, amphibians, mammals, birds, reptiles and fish). Changes in avian and/or mammalian populations could indirectly affect other bird or mammal species, reptiles, terrestrial-phase amphibians and plants (i.e. via pollination).

Freshwater Fish

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute freshwater fish study, using a default slope of 4.5, are 1 in 8.9E+18 and 1 in 6.66E+09, respectively. The corresponding estimate chance of an individual mortality associated with the listed freshwater fish species LOC is 1 in 4.2E+08.

Based on acute toxicity data and exposure estimates, indirect effects to listed species (e.g. fish, mammals, birds, amphibians and freshwater invertebrates) that rely on freshwater fish as a primary food source may be of concern.

Estuarine/Marine Invertebrates

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute marine/estuarine invertebrate (eastern oyster) study are 1 in 6.9E+04 and 2.4E+01, respectively. The corresponding estimate chance of an individual mortality associated with the listed marine/estuarine invertebrate species LOC is 1 in 3.1E+02.

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute marine/estuarine invertebrate (mysid) study are 1 in 1.2E+37 and 1 in 1.26E+02, respectively. The corresponding estimate chance of an individual mortality associated with the listed marine/estuarine invertebrate species LOC is 1 in 2.4E+16.

No data are available on reproduction and survival of marine/estuarine invertebrates following chronic exposure to myclobutanil. Based on acute toxicity data and exposure estimates, indirect effects to listed species (e.g., fish, mammals, birds, amphibians, other marine/estuarine invertebrates and reptiles) that rely on estuarine/marine invertebrates as a primary food source may be of concern.

Birds

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute dose-based bird study are 1 in 3E+44 and 1 in 7, respectively. Using the upper confidence interval for the slope, the probability of an individual mortality associated with the minimum and maximum RQ values are 1 in 3E+97 and 1 in 19, respectively. Using the lower confidence interval for the slope, the probabilities are 1 in 7.8E+11 and 1 in 3.4, respectively. The corresponding estimate chance of an individual mortality associated with the listed avian species LOC is 1 in 9.7E+11 with upper and lower estimates of 1 in 4.3E+03 and 1 in 2.3E+25, respectively.

Page 73 of 88

No RQs were estimated for the subacute dietary avian study because the LC_{50} 's were higher than the highest concentration tested. Therefore, the probability of an individual mortality associated with the RQs was not calculated. In addition, no slope is available for the subacute dietary studies. A default slope of 4.5, the highest concentration value tested in the subacute dietary study in the bird and the listed avian species LOC are used to estimate the probability of an individual mortality associated with the listed avian species LOC. The probability of an individual mortality associated with the listed avian species LOC is greater than 1 in 2.9E+05.

The data do not indicate risks to reproduction and survival of birds following chronic exposure to myclobutanil. Based on acute risks, indirect effects to listed species (e.g., mammals, other birds, amphibians, reptiles and plants) that rely on birds as a primary food source or as pollinators may be of concern. Because birds are used as a surrogate for reptiles, there is also concern for listed animals that require reptile burrows as habitat.

Mammals

The probability of an individual mortality associated with the minimum and maximum calculated RQ values for the acute dose-based mammal study, using a default slope of 4.5, are 1 in 1.6E+04 and 1 in 8.9E+18, respectively. The corresponding estimate chance of an individual mortality associated with the listed mammalian species LOC is 1 in 2.9E+05.

The chronic endpoint for mammalian species is based on testicular, epididymal and prostatic atrophy in P2 males; slight increase in stillborns and decrease in body weight gain in pups during lactation in both the F1 and F2 generations. If reproduction following myclobutanil exposure is reduced to the extent that it has an impact on mammalian populations, reduction in mammalian populations that are used as a resource for listed species may be of concern. Given that acute and chronic LOCs are exceeded for mammals, indirect effects to listed species (e.g., other mammals, birds, amphibians, reptiles, plants (pollination) and terrestrial invertebrates) that rely on mammals as a primary food source, or on mammal burrows for shelter or breeding habitat, may be of concern.

d. Critical Habitat

In the evaluation of pesticide effects on designated critical habitat, consideration is given to the physical and biological features (constituent elements) of a critical habitat identified by the U.S Fish and Wildlife and National Marine Fisheries Services as essential to the conservation of a listed species and which may require special management considerations or protection. The evaluation of impacts for a screening level pesticide risk assessment focuses on the biological features that are constituent elements and is accomplished using the screening-level taxonomic analysis (risk quotients, RQs) and listed species levels of concern (LOCs) that are used to evaluate direct and indirect effects to listed organisms.

The screening-level risk assessment has identified potential concerns for indirect effects on listed species for those organisms dependant upon marine/estuarine invertebrates, birds or

mammals. In light of the potential for indirect effects, the next step for EPA and the Service(s) is to identify which listed species and critical habitat are potentially implicated. Analytically, the identification of such species and critical habitat can occur in either of two ways. First, the agencies could determine whether the action area overlaps critical habitat or the occupied range of any listed species. If so, EPA would examine whether the pesticide's potential impacts on non-endangered species would affect the listed species indirectly or directly affect a constituent element of the critical habitat. Alternatively, the agencies could determine which listed species depend on biological resources, or have constituent elements that fall into, the taxa that may be directly or indirectly impacted by the pesticide. Then EPA would determine whether use of the pesticide overlaps the critical habitat or the occupied range of those listed species. At present, the information reviewed by EPA does not permit use of either analytical approach to make a definitive identification of species that are potentially impacted indirectly or critical habitats that is potentially impacted directly by the use of the pesticide. EPA and the Service(s) are working together to conduct the necessary analysis.

This screening-level risk assessment for critical habitat provides a listing of potential biological features that, if they are constituent elements of one or more critical habitats, would be of potential concern. These correspond to the taxa identified above as being of potential concern for indirect effects and include the following: marine/estuarine invertebrates, birds and mammals. This list should serve as an initial step in problem formulation for further assessment of critical habitat impacts outlined above, should additional work be necessary.

e. Co-occurrence Analysis

The goal of the analysis for co-location is to determine whether sites of pesticide use are geographically associated with known locations of listed species. At the screening level, this analysis is accomplished using the LOCATES 2.10.3 database. The database uses location information for listed species at the county level and compares it to agricultural census data for crop production at the same county level of resolution. The product is a listing of federally listed species that are located within counties known to produce the crop upon which the pesticide will be used.

Table 48 below reports the states in which endangered species reside that have the proposed myclobutanil uses. The following crops were selected in LOCATES: eggplant, okra, peppers, bell, peppers, chili (all peppers - excluding bell), pimientos, avocados, avocados (PR), bananas, bananas (PR), citron (PR), citrus fruit, all, citrus fruit, other fruits/other (PR), fruits and coconuts (PR), grapefruit, grapefruit (PR), guavas, k- early citrus, kiwifruit, kumquats, lemons, lemons and limes (PR), limes, mangoes, mangoes (PR), nectarines, oranges (PR), oranges, all, oranges, other, oranges, valencia, papayas, papayas (PR), passion fruit, pineapples (PR), pineapples harvested, pineapples not harvested, plantains (PR), pomegranates, soursops (PR), tangelos, tangerines, temples, amaranth, celery, escarole and endive, lettuce, all, lettuce, head, lettuce, leaf, lettuce, romaine, parsley, rhubarb, artichokes. Some crops on the label were not listed in LOCATES. The data suggest that there is considerable potential for exposure to a variety of endangered species from myclobutanil uses.

The Agency's levels of concern for Federally listed freshwater fish (aquatic phase amphibians), marine/estuarine invertebrates, birds (reptiles and terrestrial phase amphibians) and mammals are exceeded for the proposed new uses of myclobutanil. It is assumed that LOCs are exceeded for listed species within the broad taxonomic groups co-located with myclobutanil treatment areas as described after the tables.

Table 48. Aggregated Taxa Count by State for All Selected

No species exclusions.

Minimum of 1 Acre
All Medium Types Reported

eggplant, okra, peppers, bell, peppers, chili (all peppers - excluding bell), pimientos, avocados, avocados (PR), bananas, bananas (PR), citron (PR), citrus fruit, all, citrus fruit, other, fruits / other (PR), fruits and coconuts (PR), grapefruit, grapefruit (PR), guavas, k-early citrus, kiwifruit, kumquats, lemons, lemons and limes (PR), limes, mangoes, mangoes (PR), nectarines, oranges (PR), oranges, all, oranges, other, oranges, valencia, papayas, papayas (PR), passion fruit, pineapples (PR), pineapples harvested, pineapples not harvested, plantains (PR), pomegranates, soursops (PR), tangelos, tangerines, temples, amaranth, celery, escarole and endive, lettuce, all, lettuce, head, lettuce, leaf, lettuce, romaine, parsley, rhubarb, artichokes

AL, AK, AZ, AR, CA, CO, CT, DE, DC, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA, ME, MD, MA, MI, MN, MS, MO, MT, NE, NV, NH, NJ, NM, NY, NC, ND, OH, OK, OR, PA, PR, RI, SC, SD, TN, TX, UT, VT, VA, WA, WV, WI, WY

	Amphibian	Bird	Fish	Reptile	Terrestrial	Marine	Bivalve	Crustacea	Gastropod	Conf/Cycd	Dicot	Ferns	Monocot
					Mammal	Mammal							i
Counties	108	818	569	326	1073	103	366	60	36	6	685	40	362
States	12 -	45	39	26	47	9	27	12	15	3	43	12	38
Species	20	77	128	33	60	7	68	21	67	3	613	25	67

- C. Description of Assumptions, Limitations, Uncertainties, Strengths and Data Gaps
- 1. Assumptions, Limitations, and Uncertainties Related to Exposure For All Taxa

Maximum Use Scenario

The screening-level risk assessment focuses on characterizing potential ecological risks resulting from a maximum use scenario, which is determined from labeled statements of maximum application rate and number of applications with the shortest time interval between applications. The frequency at which actual uses approach this maximum use scenario may be dependent on insecticide resistance, timing of applications, cultural practices, and market forces.

2. Assumptions, Limitations and Uncertainties Related to Exposure For Aquatic Species

Aquatic Exposure Model

Extrapolating the risk conclusions from the standard pond scenario modeled by PRZM/EXAMS may either underestimate or overestimate the potential risks. Major uncertainties with the standard runoff scenario are associated with the physical construct of the watershed and representation of vulnerable aquatic environments for different geographic regions. The physicochemical properties (pH, redox conditions, etc.) of the standard farm pond are based on a Georgia farm pond. These properties are likely to be regionally specific because of local hydrogeologic conditions. However, the fate data indicated that myclobutanil was stable to hydrolysis and anaerobic soil conditions, thus the regional differences my due more to hydrology differences rather than environmental difference. Any alteration in water quality parameters may impact the environmental behavior of the pesticide. The farm pond represents a well mixed, static water body. Because the farm pond is a static water body (no flow through), it does not account for pesticide removal through flow through or accidental water releases. However, the lack of water flow in the farm pond provides an environmental condition for accumulation of persistent pesticides. The assumption of uniform mixing does not account for stratification due to thermoclines (e.g., seasonal stratification in deep water bodies). Additionally, the physical construct of the standard runoff scenario assumes a watershed to pond area ratio of 10. This ratio is recommended to maintain a sustainable pond in the Southeastern United States. The use of higher watershed to pond ratios (as recommended for sustainable ponds in drier regions of the United States) may lead to higher pesticide concentrations when compared to the standard watershed to pond ratio.

The standard pond scenario assumes that uniform environmental and management conditions exist over the standard 10 hectare watershed. Soils can vary substantially across even small areas, and thus, this variation is not reflected in the model simulations. Additionally, the impact of unique soil characteristics (e.g., fragipan) and soil management practices (e.g., tile drainage) are not considered in the standard runoff scenario. The assumption of uniform site and management conditions is not expected to represent some site-specific conditions. Extrapolating the risk conclusions from the standard pond scenario to other aquatic habitats (e.g., marshes, streams, creeks, and shallow rivers, intermittent aquatic areas) may either underestimate or overestimate the potential risks in those habitats.

There are limited monitoring studies for myclobutanil in freshwater environments and no studies in marine environments. In addition, the monitoring studies were not targeted to myclobutanil use areas. Therefore, the exposure of aquatic species to myclobutanil is based entirely on the modeled data. The output of models such as PRZM/EXAMS is dependent upon the quality of the environmental fate input parameters. The fate data are based on studies that may not be acceptable under current classification standards as they were conducted prior to 1986 before Good Laboratory Practice (GLP) standards and data requirements for registration were promulgated. In addition, the aerobic and anaerobic aquatic metabolism study requirements have not been met by the registrant. Therefore, the Agency assumed that the residues of concern are persistent (stable) for the exposure assessment.

3. Assumptions, Limitations and Uncertainties Related to Exposure for Terrestrial Species

a. Location of Wildlife Species

For this screening-level terrestrial risk assessment, a generic bird or mammal was assumed to occupy either the treated field or adjacent areas receiving myclobutanil at the treatment rate on the field. Actual habitat requirements of any particular terrestrial species were not considered, and it was assumed that species occupy, exclusively and permanently, the modeled treatment area. Spray drift model predictions suggest that this assumption leads to an overestimation of exposure to species that do not occupy the treated field exclusively and permanently.

b. Routes of Exposure

This screening-level assessment for spray applications of myclobutanil only considered dietary exposure. Other routes of exposure that were not considered in the assessment are incidental soil ingestion exposure, inhalation exposure, dermal exposure, and drinking water exposure.

Incidental soil ingestion exposure

This risk assessment does not consider incidental soil ingestion. Available data suggests that up to 15% of the diet can consist of incidentally ingested soil depending on the species and feeding strategy (Beyer et al., 1994). A simple first approximation of soil concentration of pesticide from spray application shows that ingestion of soil at an incidental rate of up to 15% of the diet would not increase dietary exposure.

Inhalation exposure

The screening risk assessment does not consider inhalation exposure. Such exposure may occur through three potential sources: (1) spray material in droplet form at the time of application (2) vapor phase pesticide volatilizing from treated surfaces, and (3) airborne particulate (soil, vegetative material, and pesticide dusts).

Available data suggest that inhalation exposure at the time of application is not an appreciable route of exposure for birds. According to research on mallards and bobwhite quail, respirable particle size in birds (particles reaching the lung) is limited to a maximum diameter of 2 to 5 microns. The spray droplet spectra covering the majority of pesticide application situations (AgDRIFT model scenarios for very-fine to coarse droplet applications) suggests that less than 1% of the applied material is within the respirable particle size.

Theoretically, inhalation of pesticide's active ingredient in the vapor phase may be another source of exposure for some pesticides under some exposure situations. However, volatilization of myclobutanil from water and soil surfaces is not expected; therefore, inhalation should not be an important exposure pathway.

The impact from exposure to dusts contaminated with the pesticide cannot be assessed generically because soil properties (chemical and physical), which impact the estimation of such exposures are highly site-specific.

Dermal Exposure

The screening assessment does not consider dermal exposure, except as it is indirectly included in calculations of RQs based on lethal doses per unit of pesticide treated area. Dermal exposure may occur through three potential sources: (1) direct application of spray to terrestrial wildlife in the treated area or within the drift footprint, (2) incidental contact with contaminated vegetation, or (3) contact with contaminated water or soil.

Data which address dermal exposure of wildlife to pesticides in a quantitative fashion are extremely limited. The Agency is actively pursuing

modeling techniques to account for dermal exposure via direct application of spray and by incidental contact with vegetation.

Drinking Water Exposure

The exposure of a target organism to a pesticide's active ingredient may be the result of consumption of surface water, groundwater or consumption of the pesticide in dew or other water on the surfaces of treated vegetation or in puddled water on treated fields. For the active ingredients of a pesticide there is a potential to dissolve in runoff and puddles on the treated field may contain the chemical.

c. Dietary Intake and Other Limitations of Oral Studies in Terrestrial

The

Species

The avian acute oral study and the avian subacute dietary study each have limitations for estimating the risk to wild species exposed to pesticides in the environment. Both studies have a fixed exposure period and do not allow for differences in the responses of individuals to different durations of exposure. With the acute oral study, the chemical is administered in a single dose. This does not mimic wild bird exposure through multiple feedings. Also, it does not account for the effect of different environmental matrices on absorption rate into the gastrointestinal tract of the animal. With the acute dietary study, the endpoint is reported as the concentration mixed with food that produces a response rather than as the dose ingested. Although food consumption sometimes allows for estimation of a dose, calculations of the mg/kg/day are confounded by undocumented spillage of feed and how consumption is measured over the duration of the test. Usually, if measured at all, food consumption is estimated once at the end of the five-day exposure period. Group housing of birds undergoing testing allows for a measure of only the average consumption per day for a group, and consumption estimates can be further confounded if birds die within a treatment group. In addition, the dietary study utilizes young birds. The exponential growth of young birds complicates the estimate of the dose; controls often nearly double in size over the duration of the test. Since weights are only taken at the initiation and at the end of the exposure period, the dose per body weight (mg/kg) is difficult to estimate with any precision. The interpretation of this test can be further confounded by dietary consumption. Estimation of the acute LC₅₀ value is not only a function of the intrinsic toxicity of the pesticide, but also the willingness of the birds to consume treated food.

In addition to the uncertainties associated with the two toxicity studies utilized for estimating acute risk to birds, other factors, not normally taken into account in a screening level risk assessment may narrow the differences between the dose-based and dietary-based acute RQs for birds. The factors include differences in gross energy and assimilative efficiency of laboratory feed versus food items in the field, basic maintenance metabolic rates between wild birds and captive birds, seasonal free living dietary requirements for wild birds (including gorging behavior) and specific food avoidance behavior. These uncertainties may either overestimate or underestimate the risk in a screening level assessment.

Gross Energy and Assimilative Efficiency. This screening level risk assessment does not allow for gross energy and assimilative efficiency differences between wildlife food items and laboratory feed. For example, a typical laboratory avian feed, as used, contains approximately 2750 kcal/kg. The Agency's Wildlife Exposure Factors Handbook (U.S. Environmental Protection Agency, 1993) presents the following dry-weight and fresh weight caloric contents for selected wildlife food items:

Food Item	Energy Dry (kcal/kg)	Energy Fresh (kcal/kg)
grasses	4200	1300
broadleaf forage	4200	2200
seeds	5100	4700
fruits	2000	1100
insects	5600	1600

On gross energy content alone, direct comparison of a laboratory dietary concentration-based effects threshold to a fresh-weight pesticide residue estimate would result in an underestimation of field exposure by food consumption by a factor of 1.25 - 2.5 for most food items. Only for seeds would the direct comparison of dietary threshold to residue estimate lead to an overestimate of exposure.

Depending upon species and dietary matrix, bird assimilation of wild diet energy ranges from 23 - 80%, and mammal's assimilation ranges from 41 - 85% (U.S. Environmental Protection Agency, 1993). If it is assumed that laboratory chow is formulated to maximize assimilative efficiency (e.g., a value of 85%), a potential for underestimation of exposure may exist by assuming that consumption of food in the wild is comparable with consumption during laboratory testing.

Metabolic Rates. In the screening process, exposure may be underestimated because metabolic rates are not related to food consumption. For example, the Wildlife Exposure Factors Handbook (U.S. Environmental Protection Agency, 1993) includes allometric models for estimating both existing metabolic rate (EMR) and free living metabolic rate (FMR). EMR is the metabolic rate necessary for animal maintenance in captivity without body weight loss, a condition similar to caged test animals. FMR is the energy requirement for an organism in the wild. For passerine birds these relationships are as follows:

```
EMR (kcal/day) = 1.572 (body weight g) ^{0.6210} FMR (kcal/day) = 2.123 (body weight g) ^{0.749}
```

Using a weight range for passerines of 10 - 150 g, the EMR predictions range from 6.6 to 35.3, and the FMR ranges from 11.9 to 90.5 kcal/day. Thus, it appears that not accounting for increased energy demands of organisms in the wild when comparing dietary residues to dietary toxicity thresholds represents about a two-fold underestimation in exposure potential.

Free Living Metabolic Requirements. The screening procedure does not account for situations where the feeding rate may be above or below requirements to meet free living metabolic

requirements. Gorging behavior is a possibility under some specific wildlife scenarios (e.g., bird migration) where the food intake rate may be greatly increased. Kirkwood (1983) has suggested that an upper-bound limit to this behavior might be the typical intake rate multiplied by a factor of 5.

Avoidance. In contrast is the potential for avoidance, operationally defined as animals responding to the presence of noxious chemicals in their food by reducing consumption of treated dietary elements. This response is seen in nature where herbivores avoid plant secondary compounds. For agrochemicals, Dolbeer et al. (1994) reported that the use of methiocarb on fruit crops reduced depredation by birds. Of course, chemical treatment of food sources and any subsequent avoidance of those food sources by a species may, in itself, result in detrimental effects on the energetics of the species.

d. Incidental Releases Associated With Use

This risk assessment was based on the assumption that the entire treatment area is subject to pesticide application at the rates specified on the label. Uneven application of the pesticide through changes in calibration of application equipment, spillage, and localized releases at specific areas of the treated field that are associated with specifics of the type of application equipment were not accounted for in this assessment.

e. Residue Levels Selection

The Agency relies on the work of Fletcher et al. (1994) for setting the assumed pesticide residues in wildlife dietary items. These residue assumptions are believed to reflect a realistic upper-bound residue estimate, although the degree to which this assumption reflects a specific percentile estimate is difficult to quantify. It is important to note that the field measurement efforts used to develop the Fletcher estimates of exposure involve highly varied sampling techniques. It is entirely possible that much of these data reflects residues averaged over the entire above ground plants in the case of grass and forage sampling. Depending upon a specific wildlife species' foraging habits, whole aboveground plant samples may either underestimate or overestimate actual exposure.

f. Terrestrial Exposure Model

At this time, the T-REX model cannot accurately estimate terrestrial exposure levels with pesticides applied with varying application rates and application intervals. The technology is not yet available for these types of estimations.

4. Assumptions, Limitations and Uncertainties Related to Effects Assessment

a. Data Gaps

Ecotoxicity Studies on the Parent

The ecotoxicity database on the parent is not complete. Chronic studies on freshwater and marine/estuarine invertebrates and fish and studies on aquatic vascular plants and terrestrial plants are not available. The chronic study on marine/estuarine fish is not required at this time due to low acute toxicity, the availability of a chronic study on freshwater fish and likely low potential for risk. A chronic study on marine/estuarine invertebrates is required because myclobutanil is highly acutely toxic to marine/estuarine invertebrates and no chronic studies are available for freshwater invertebrates. A chronic study on freshwater invertebrates is not required if a chronic study on estuarine/marine invertebrates is conducted. Myclobutanil is not very acutely toxic to freshwater invertebrates. Studies on aquatic vascular plants are not available. One study on nonvascular plants indicates that myclobutanil is probably not very toxic to nonvascular aquatic plants. Incident data for terrestrial plants indicate that myclobutanil may damage terrestrial plants; however, the labels permit use around agricultural crops, thus limiting its use if any damage to crops occurs. Therefore, toxicity studies on aquatic vascular plants are not required at this time. There is an uncertainty associated with risk to terrestrial plants because of the incidence reports of damage to terrestrial plants. However, as stated, the permitted use around agricultural crops would limit the use if crop damage were observed.

End-Use Product Toxicity

No ecotoxicity data on any formulations have been submitted for birds, fish, plants or invertebrates. Acute oral toxicity data with the rat are available for several myclobutanil formulations. As stated previously, with the exception of the 60 DF formulation, the myclobutanil formulations are not more acutely toxic to rats than the technical material. The current estimated acute mammalian risks with the technical material are protective of any estimated acute mammalian risks utilizing the acute rat endpoint for the 60 DF formulation. However, an uncertainty remains as to whether or not the 60 DF formulation would be more acutely toxic than the technical material in the mouse. No chronic ecotoxicity data are available for any formulations. This adds uncertainty to the assessment. For birds and mammals, the toxicity data on the parent are used for estimating risk.

Degradate Toxicity

Mammalian acute toxicity and reproduction data are available for the 1,2,4-triazole degradate. The acute LD_{50} 's for the parent compound are 1600 mg/kg for rats and 1360 mg/kg for mice. For the degradate, they are 1648 mg/kg for rats and 3650 mg/kg for mice. The NOAEC/LOAECs for rat reproduction studies of the parent versus the degradate are 200/1000

ppm and 250/500 ppm, respectively. These data indicate that for the mammalian toxicity endpoints, the 1,2,4-triazole degradate is equally toxic as the parent. No ecotoxicity data on the degradate are available for either aquatic organisms or other terrestrial organisms. For fish and aquatic invertebrates, EECs on both the parent and the 1,2,4-triazole degradate were used for estimating risk. Total residues were not included in the terrestrial exposure values. Instead, the exposure values for the degradate were estimated separately and the potential additional risk to mammals was discussed in the risk description.

b. Sublethal Effects

For an acute risk assessment, the screening risk assessment relies on the acute mortality endpoint as well as a suite of sublethal responses to the pesticide, as determined by the testing of species response to chronic exposure conditions and subsequent chronic risk assessment. Consideration of additional sublethal data in the assessment is exercised on a case-by-case basis and only after careful consideration of the nature of the sublethal effect measured and the extent and quality of available data to support establishing a plausible relationship between the measure of effect (sublethal endpoint) and the assessment endpoints.

c. Age Class and Sensitivity of Effects Thresholds

Testing of juvenile organisms may overestimate toxicity at older age classes for pesticidal active ingredients that act directly (without metabolic transformation) because younger age classes may not have the enzymatic systems associated with detoxifying xenobiotics. However, the influence of age may not be uniform for all compounds, and compounds requiring metabolic activation may be more toxic in older age classes. The risk assessment uses the most sensitive life-stage information as the conservative screening endpoint.

d. Use of Most Sensitive Species Tested

Screening risk assessment relies on a selected toxicity endpoint from the most sensitive species tested; however, the selected toxicity endpoints do not necessarily reflect sensitivity of the most sensitive species in a given environment. The relative position of the most sensitive species tested in the distribution of all possible species is a function of the overall variability among species to a particular chemical. Toxicity thresholds may vary up to four orders of magnitude across species for some chemicals¹. Therefore, risk conclusions may under-or overestimate actual ecological risk for a given species.

1

Mayer, F.L. and M.R. Ellersieck, 1986. Manual of acute toxicity: Interpretation and data base for 410 chemicals of freshwater animals. Resource Publication 160. U. S. Fish and Wildlife Service. Department of the Interior, Washington, D.C., 579 p.

5. Assumptions, Limitations, Uncertainties, Strengths and Data Gaps Related to the Acute and Chronic LOC's

The risk characterization section of the assessment document includes an evaluation of the potential for individual effects to listed species at an exposure level equivalent to the LOC. This evaluation is based on the median lethal dose estimate and dose/response relationship established for the effects study corresponding to each taxonomic group for which the LOCs are exceeded. The slope of the probit-dose response is used to generate a probability of individual effects near the low end tail of the curve. Predictions based on low probability events are by nature highly uncertain. Moreover, for this assessment the dose-response curve representing a given taxa is generated from one study using one species. It is likely that the resulting dose-response relationship does not represent the response of all species within a taxa. Calculating the probability of individual effects at the lower and upper bounds of the slope is designed to address this source of uncertainty but the extent to which this captures the variability within a taxa is unknown. In some cases, a probit dose-response relationship cannot be calculated. In these instances, event probabilities are calculated based on a default slope assumption of 4.5 (Urban and Cook, 1986).

V. Literature Cited

- Burns, L. A. 2002. EXAMS (<u>Exposure Analysis Modeling System</u>) Version 2.98.04.06. Environmental Research Laboratory. U. S. Environmental Protection Agency. Athens, GA.
- Carsel et al., 1997. PRZM (Pesticide Root Zone Model) Version 3.12.2 Environmental Research Laboratory. U. S. Environmental Protection Agency. Athens, GA.
- Dolbeer, K.R., M.L. Avery, and M.E. Tobin. 1994. Assessment of field hazards to birds from methicarb applications to fruit crops. Pesticide Science 40:147-161.
- Fletcher, J.S., J.E. Nellesson, and T. G. Pfleeger. 1994. Literature review and evaluation of the EPA food-chain (Kenaga) nomogram, an instrument for estimating pesticide residues on plants. Environ. Tox. and Chem. 13(9):1383-1391.
- GENEEC2, 2001. <u>GEN</u>)eric (<u>E</u>)stimated (<u>E</u>)nvironmental (<u>C</u>)oncentration Model. Version 2.0. (08/05/01). Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Arlington, VA
- Hoerger, F. and E.E. Kenaga. 1972. Pesticide residues on plants: correlation of representative data as a basis for estimation of their magnitude in the environment. *IN:* F. Coulston and F. Corte, eds., Environmental Quality and Safety: Chemistry, Toxicology and Technology. Vol 1. George Theime Publishers, Stuttgart, Germany. pp. 9-28.

- SCI-GROW (Screening Concentration In Ground Water) 2003. .(version 2.3; July 29, 2003). Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Arlington, VA. http://www.epa.gov/oppefed1/models/water/index.htm
- T-REX. 2006. (Terrestrial Residue EXposure model) Version 1.3.1 (12/07/06). Environmental Fate And Effects Division, Office Of Pesticide Programs, U.S. Environmental Protection Agency.
- USDA. 2006. Pesticide Data Program (PDP). Annual Summary Calendar, Year 2005. USDA-AMS-S&T-Monitoring Programs Office. Manassas, VA.
- U.S. Environmental Protection Agency. 1993. Wildlife Exposure Factors Handbook. Office of Research and Development, Washington, D.C. EPA/600/R-13/187a.
- U.S. Environmental Protection Agency. 1998. Guidelines for Ecological Risk Assessment. Risk Assessment Forum, Office of Research and Development, Washington, D.C. EPA/630/R-95/002F. April 1998.
- U.S. Environmental Protection Agency. 2000. Risk Characterization Handbook. Science Policy Council, U.S. Environmental Protection Agency, Washington, D.C. 20460. EPA 100-B-00-002. December 2000.
- U.S. Environmental Protection Agency, 2002. Guidance for Selecting Input Parameters in Modeling the Environmental Fate and Transport of Pesticides. Version II February 28, 2002. http://www.epa.gov/oppefed1/models/water/input_guidance2_28_02.htm. U.S. Environmental Protection Agency, Office of Pesticide Programs, Environmental Fate and Effects Division. Arlington, VA.
- U.S. Environmental Protection Agency. 2004. Excel spreadsheet tool IECV1.1 (Individual Effect Chance Model Version 1.1). Office of Pesticide Programs, Environmental Fate and Effects Division. (June 22, 2004).
- U.S. Environmental Protection Agency. 2004. Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs, U.S. Environmental Protection Agency. Endangered and Threatened Species Effects Determinations. Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, Washington, D.C. January 23, 2004.
- U.S. Environmental Protection Agency. 2005. Generic Format and Guidance for the Level I Screening Ecological Risk Assessments Conducted in the Environmental Fate and Effects Division. Office of Pesticide Programs, Washington, D.C. January 24, 2005.

- USGS. 2001. J. Bloomquist, J. Denis, J. Cowles, J. Hetrick, R. Jones, and N. Birchfield. Pesticides in Selected Water-Supply Reservoirs and Finished Drinking Water, 1999-2000: Summary of Results from a Pilot Monitoring Program. Open File Report 01-456
- Urban, D.J. and N.J. Cook. 1986. Hazard Evaluation Division Standard Evaluation Procedure Ecological Risk Assessment. EPA 540/9-85-001. U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC.
- Willis, G.H. and L.L. McDowell. 1987. Pesticide persistence on foliage. Environ. Contam. Toxicol. 100:23-73.

VI. Appendices

- A. Data Requirement Table
- **B.** Environmental Fate Data
- C. Aquatic Exposure Model and Results
- D. Ecological Effects Data
- E. Risk Quotient Method and Levels of Concern
- F. Incidence Summary Reports (A and B)
- G. Terrestrial Risk: T-REX Tables
- H. Summary of Endangered/Threatened Species (LOCATES)
- I. Ecotoxicity and Environmental Fate Bibliography

TEXT SEARCHABLE DOCUMENT

Appendix A: Data Requirement Tables

2068730

Environmental Fate and Effects

Guideline #	Data Requirement (material)	MRID#	Study Classification	Are more data needed?
161-1	Hydrolysis	00141679	Acceptable	No
161-2	Photodegradation in Water	40641501 40319801 40528801	Acceptable	No
161-3	Photodegradation on Soil	00164988	Acceptable	No
161-4	Photodegradation in Air	No data	N/A	No
162-1	Aerobic Soil Metabolism	00164561	Acceptable	No
162-2	Anaerobic Soil Metabolism	No MRID available	Acceptable	No
162-3	Anaerobic Aquatic Metabolism (benthic)	No data	N/A	Yes - Need estimate of persistence in water
162-4	Aerobic Aquatic Metabolism	No data	N/A	Yes - Need estimate of persistence in water
163-1	Leaching-Adsorption/Desorption	00141682	Acceptable	No
163-2	Laboratory Volatility	No data	N/A	No
163-3	Field Volatility	No data	N/A	No
164-1	Terrestrial Field Dissipation	00164563	Acceptable	No
164-2	Aquatic Field Dissipation	No data	N/A	No
164-3	Forestry Dissipation	No data	N/A	No
165-4	Accumulation in Fish	00162541	Acceptable	No
165-5	Accumulation- aquatic non-target	No data	N/A	No
166-1	Ground Water- small prospective	No data	N/A	No
166-2	Groundwater – small retrospective	No data	N/A	No
201-1	Droplet Size Spectrum	No data	N/A	No
202-1	Drift Field Evaluation	No data	N/A	No

Ecological Toxicity Data

	TABLE A-2: Ecological Toxicity Data Requirements							
Guideline #	Data Requirement	MRID#	Classification	Are more data needed?				
71-1	Avian acute oral LD ₅₀ (bobwhite quail)	00144286	Acceptable	No. Bird reproduction studies not tested at				
71-2	Avian subacute dietary LC ₅₀ (bobwhite quail) (mallard duck)	00144287 00144288	Acceptable	sufficiently high concentration levels. No studies required at this time because LOAEC is higher				
71-4	Avian reproduction (bobwhite quail) (mallard duck)	43087901 43087902	Supplemental	than the concentration levels applied for proposed uses.				
72-1	Freshwater fish acute LC ₅₀ (rainbow trout) (bluegill sunfish)	00141677 00144285	Acceptable Acceptable					
72-2	Freshwater invertebrate acute EC ₅₀ (daphnia)	00141678	Acceptable					
72-3a	Estuarine/marine fish acute LC_{50} (sheepshead minnow)	42747903	Acceptable	No				
72-3b	Estuarine/marine invertebrate acute EC ₅₀ (eastern oyster) (mysid shrimp)	42747901 42747902	Supplemental Acceptable					
72-4a	Freshwater fish early life stage (fathead minnow)	00164986 40409201 40480401	Acceptable	No				
72-4b	Freshwater invertebrate life cycle (daphnia)	N/A	Not available	No if acceptable 72-4c submitted Yes – highly acutely toxic,				
72-4c	Estuarine/marine life cycle (mysid)	N/A	Not available	no 72-4a study and marine/estuarine exposure				
72-5	Freshwater fish life cycle (fathead minnow)	N/A	Not available	expected No				
72-7	Aquatic Field Study	N/A	Not available	No				
81-1	Acute mammalian oral LD ₅₀ (rat)	00165239	Acceptable	No				
83-4	Mammalian Reproduction	00149581	Acceptable	No				

	TABLE A-2: Ecological Toxicity Data Requirements							
Guideline #	Data Requirement	MRID#	Classification	Are more data needed?				
	(rat)	00143766						
123-1(a)	Seedling Emergence	N/A	Not available	No - Incidence data indicate potential damage to terrestrial plants. The fact				
123-1(b)	Vegetative Vigor	N/A	Not available	that myclobutanil is labeled for use around agricultural crops indicates that toxicity to plants may not be sufficiently high to indicate a concern.				
122-2	Aquatic plant algae Selenastrum capricornutum	41984801	Acceptable	No - Study on aquatic non- vascular plants indicates that myclobutanil probably not				
123-2	Aquatic plant acute EC ₅₀ <i>Lemna gibba</i>	N/A	Not available	toxic to this taxa. Although incidence data for terrestrial plants indicate that myclobutanil may damage terrestrial plants, the labels permit use around agricultural crops. Any damage to crops naturally limit the use.				
141-1	Acute honey bee contact LD ₅₀ Acute honey bee 5-day oral LD ₅₀	N/A	Not available	No – non-guideline dust study on bees indicates that				
141-2	Honey Bee Residue on Foliage	N/A	Not available	myclobutanil not toxic to honey bees				

TEXT SEARCHABLE DOCUMENT

Appendix B: Environmental Fate Data

2068731

Appendix B. Table 1. Selected Fate and Transport data for Myclobutanil.							
Parameter	Input Value and Unit	Source					
Chemical Formula Myclobutanil: alpha-butyl-alpha (4-chlorophenyl)-1H-1,2-triazole-1-propane-nitrile							
Chemical Structure: Myclobutanil	CI CN N N						
Molecular Weight	288.8 g/ mol	DP Barcode D289700 (6/25/03)					
Solubility in Water (pH 7, 20°C)	142 mg/L	DP Barcode D289700 (6/25/03)					
161-1 Hydrolysis at pH 5,7, and 9	Stable	MRID 001416-79					
161-2 Aqueous Photolysis (T½)	Stable	MRID # 406415-01, 403198-01, 405288-01					
161-3 Soil Photolysis	143 days	Acc# 266121, 214084 (D197478)					
163-1 Partition Coefficient, K _{ads} a	1.46, 2.39, 4.44, 7.08, 9.77 mL/g	MRID# 141602					
162-1 Aerobic Soil Metabolism (T½) ^b	198, 224 days	MRID# 164561					
162-3 Anaerobic Soil Metabolism	Assume Stable, No appreciable degradation in 62 days	DP Barcode D289700 (6/25/03)					
162-3 Anaerobic Aquatic Metabolism	No Data Submitted						
162-4 Aerobic Aquatic Metabolism	No Data Submitted						
164-1 Terrestrial Field Dissipation	92 to 292 days	MRID # 164563					

^a Kocs are presented in Appendix B, Table 3.

Input Parameters

Model input parameters were estimated from the fate and transport properties given Table 3 and the other default values are prepared or selected as recommended by EFED Input Guidance document (USEPA, 2002). Pesticide usage information was obtained from the draft labels. The inputs values used in FIRST and SCI-GROW models are summarized in Table 4.

The models currently used by EFED, assume that the degradation follow first order kinetics, and therefore require an estimate of the half-life. Myclobutanil degradation, however, is best described using a hockey stick degradation pattern. This type of

b (T½) – Myclobutanil decline does not follow first-order kinetics, therefore the decay rate is not truly a half-life. Estimate of DT₅₀ or half-life is dependant upon method used to determine value.

degradation pattern cannot be modeled using first-order kinetics.

The previously reported half-lives for myclobutanil cite a range of between 61 and 71 days (D289700), which described the decline reasonably well for the first 90 days of the study, but grossly overestimates the remaining decline. The method used to estimate these half-lives was not stated, but it appears that only the first 90 (or less) days of a 367 day study were used. EFED reevaluated the data and re-estimated the decline rate constants utilizing all the data for myclobutanil (see discussion in Appendix B and Appendix B, Tables 1 and 2).

The linear regression of the log-normal transformed myclobutanil radioactivity provided the best estimate of the measured residues (as percent of applied radioactivity) versus time (e.g., 29 to 33% myclobutanil) remaining at 367 days. The study was not conducted long enough to observe a DT_{75} or DT_{90} . The 90-percent upper bound of the mean (n=2) aerobic soil metabolism half-life for myclobutanil was estimated to be 251 days. Additionally, the models currently used by EFED were not developed for a persistent chemical where accumulation might occur.

Analysis of the sorption data (Appendix B, Tables 3) indicate sorption is not significantly correlated with organic matter (carbon) (EAB# 6087.03/05/86). Therefore, lowest non-sand Freundlich K_{ads} was used to estimate the EDWCs for myclobutanil (USEPA, 2002).

The aerobic aquatic metabolism half-life was assumed to be twice that of the aerobic soil metabolism half-life estimated as a model input (USEPA, 2002).

Appendix B. Table 2. Input parameters for the Models used in Myclobutanil Water Exposure Assessment						
Input	Value	Rationale				
Application rate/number/interval	0.25 lb a.i.A ⁻¹ /8/14 days	Maximum proposed label use				
Incorporation depth	0	USEPA, 2002				
Hydrolysis	0 (stable)	USEPA, 2002				
Aquatic Photodegradation	0 (stable)	USEPA, 2002				
Solubility	142.0 mg/L	USEPA, 2002				
Aerobic Soil Metabolism Myclobutanil	251 days	= Upper 90 th bound on mean				
Aerobic Aquatic Metabolism Myclobutanil	Estimated as 502 days	= 2 x ASM per USEPA, 2002				
Anaerobic Aquatic Metabolism	0 Stable	= Assumed stable to be conservative				
Mobility (Freundlich K _{ads}) Myclobutanil	2.39 mL/g	GENEEC, PRZM/EXAMS = Lowest non-sand value				
Mobility (Koc) Myclobutanil	224	For SCI-GROW1 = Lowest Koc				
Aerial Spray Drift Ground Spray Drift	0.05 (fraction) 0.01 (fraction)	USEPA, 2002				
Application Efficiency (APPEFF) Aerial Ground	0.95 (fraction) 0.99 (fraction)	USEPA, 2002				
Wetted In	No	Label				

SCI-GROW input specifies a Koc rather than K_{ads} as an input value.

Appendix 1. Additional Environmental Fate Discussion

The method used to determine the aerobic soil metabolism (MRID 164561) half-lives reported in earlier DERs could not be replicated. The pattern of decline appears to fit the common degradation pattern termed the "hockey stick". An analysis of degradation kinetics was conducted to derive the best description of the measured decline curves in aerobic soil metabolism studies. The entire data set (0 to 367 days) and a portion of the data (0 to 90 days) were analyzed using linear regression of the ln-transformed data and non-linear regression of the untransformed data.

The following equations and assumptions were made (based upon draft guidance being developed by the Fate Tech Team, Eckel, 1/2007.

Eq 1. $dC/dt = -kC^n$

if n=1, then
$$ln(C_0/C)$$
 = -kt (first order equation) if n \neq 1 then
Eq. 2. $(1/(n-1))*((1/C^{n-1}) - (1/C_0^{n-1}))$ = -kt
$$C = ((n-1)*k*t + (1/co^{(n-1)}))^{(-1/(n-1))}; co = Co/100$$

The rings of myclobutanil, triazole and chlorophenyl rings were labeled [¹⁴C], thus, the decline (of radioactivity) of myclobutanil was measured by each ring. The formation and decline of 1,2,4-triazole could also be tracked with the triazole ring.

Assuming first-order kinetics (eq. 1) a half-life ($T_{1/2}$) was calculated using linear regression on the ln-transformed concentration versus time (time = 0 to 90 days or time = 0 to 367) and a DT_{50} was calculated using non-liner regression (the Levenberg-Marquardt least squares method for curve fitting) of concentration versus time (time = 0 to 90 days or time = 0 to 367). The decay rate (k, or slope) and R^2 are summarized in Appendix 2, Table 1.

The second equation (Eq 2.) result using all the data (0 to 367 days) fit the data points (Levenberg-Marquardt least squares), but was not a first order.

Appendix 1, Table 1. intercept, and reaction	Summary of regression order.	on method, time	, decay rate, c	oefficient of d	etermination (R ²),
		Parent (myclob	utanil)		
Regression		Time (days)	k	R ²	n
Linear	lnc = lnCo exp (-kt)	90	0.0096 ^a	0.99	1
			0.0077 ^b	0.97	1
Linear		367	0.0035	0.81	1
			0.0031	0.82	1
Nonlinear	C=CoExp(-kt)	90	0.10	0.99	1
			0.0091	0.95	1
		367	0.0067	0.83	1
			0.0058	0.77	11
Nonlinear-Nst order	Cc	367	0.01676	0.98	n = 2.929
					co = 1.012
	M	yclobutanil + 1,2	,4-triazole		
Regression	lnc = lnCo exp (-kt)	Time (days)			
Linear		90	0.0058 ^a	0.96	1
Linear		367	0.0022	0.85	1
Nonlinear	C=CoExp(-kt)	90	0.0069	0.92	1
Nonlinear		367	0.0037	0.68	1
Nonlinear-N st order	C°	367	0.01434	0.978	n = 4.789
					co = 0.978

^a Triazole ring labeled will include 1,2,4-triazole.

^b Chlorophenyl ring label.(1,2,4-triazole not label)

 $^{c}C = ((n-1)*k*t + (1/co^{(n-1)}))^{(-1/(n-1))}; co = Co/100$

Appendix 1, Table 2 summarizes the distribution of measured radioactivity, and the estimated half-life or DT_{50} , DT_{75} , and 367 days (end of study). The rate constant (k /day) and coefficient of determination (R^2) is also shown. From a statistical stand point (the linear and nonlinear methods) were significant (slopes) and the R^2 were fair to good, and therefore, acceptable. But in reality the linear or nonlinear methods did not fit the data very well. Either the method it fit the data well at times less than 90 days, but not at day 367 or more, or it fit at both ends, but not in the middle.

The non-linear, n-order curve fitting equation (eq. 2) fit the data also exactly. Unfortunately, it is not a first-order equation.

In summary, neither the first-order linear regression nor nonlinear regression (curve fitting) gives totally satisfactory results. When only part of the data is used the initial decline can be fit quite well, but the later data is underestimated. Using all the data, over estimated the half-life (or DT_{50}), but under estimated the DT_{70} or DT_{90} . The first-order linear regression (transform data), using all the data, was the only method that gave a reasonable estimate of the residue remaining at the end of the study (367). Neither DT_{75} or DT_{90} were reached in the study, the residues remaining at day 367 was used to evaluate the results. This was selected because it was the most conservative as it fit the data best at both the beginning and end of the study. This would result in a conservative estimate of myclobutanil concentrations in water.

	Appendix 1, Table 2. Summary of half-lives, DT50, DT75, DT90, and decay rate of myclobutanil and myclobutanil + 1,2,4 triazole estimated by linear and non-linear regression.							
	Half-life or DT50	DT75	DT90	%	Rate	Coefficient of		
PARENT ONLY	50% decline	75% decline	90% decline	Radioactivity at 367 days	constant	Determination		
Triazole Label Position		Time (days)			Days-1	\mathbb{R}^2		
Observed Mycobutanil	75	>365	>365	29				
Liner Regression (t <100 days)	72.2	144	239	3.0	0.0096	0.99		
Linear Regression (all)	198.0	396	657	27.9	0.0035	0.81		
Nonlinear 1 st order (t <100 days)	69.3	138	230	2.6	0.010	0.99		
Nonlinear 1 st order	103.5	206	343	8.7	0.0067	0.83		
Nonlinear nst order	87.6	400	2600	26.7	0.0167	0.98		
Observed Chlorophenyl Label	90	>365	>365	33				
Liner Regression (t <100 days)	90	180	299	6.0	0.0077	0.97		
Linear Regression (all)	224	447	742	32.3	0.0031	0.82		
Nonlinear 1 st order (t<100 days)	76	152	253	3.6	0.0091	0.95		
Nonlinear 1 st order	113	237	354	11.6	0.0059	0.77		
Nonlinear nst order	103	630	>1000	31.2	0.0164	0.98		
PARENT + DEGRADATE								
Observed Myclobutanil + 1,2,4 triazole	220	>365	>365	42				
Liner Regression (t <100 days)	119.5	239	397	12.0	0.0058	0.96		
Linear Regression (all)	315.1	630	1047	44.8	0.0022	0.85		
Nonlinear 1 st order (t<100 days)	100.5	201	334	8.1	0.0069	0.92		
Nonlinear 1st order	186.3	372	619	25.9	0.0037	0.68		
Nonlinear nst order	235.2			44.85	0.0144	0.98		

Adsorption/Desorption Data Summary

The sorption and desorption data for myclobutanil are summarized in Appendix B, Table 3.

Appendix 1, Table 3 Textural class, Organic Matter, Freundlich K_{ads} , Koc, and Desorption (MRID # 141682).							
Myclobutanil					,		
MRID 141602	Texture Class	OM%	K _{ads} mL/g	Koc ¹ ml/g _{soil}	K _{des}		
	Clay	0.44	2.39	936	0.588		
	Sand	0.95	1.46	265	0.468		
	Silty loam	2.05	7.08	595	4.178		
	Sandy loam	2.9	9.77	581	4.082		
	Clay loam	3.42	4.44	224	1.186		

 $^{^{-1}}$ Koc = (K_d/(%OM/1.724)) * 100 where K_{ads} is assumed to equal to K_d and OC% = OM%/1.724

The sorption and desorption data for 1,2,4-triazole are summarized in Appendix B, Table 4

Appendix 2, Tab	le 4 (MRID # 408915	01)			
1,2,4-Triazole					
MRID 408915-01	Texture Class	OM%	K _{ads} mL/g	Koc ¹ ml/g _{soil}	K_{des}
	Sand	0.2	0.234	202	0.61
	Silty clay loam	1.2	0.722	104	0.82
	Silty clay	1.2	0.833	120	2.13
	Sandy loam	1.4	0.719	89	1.14
	Clay loam	3.0	0.748	43	1.07

 $^{^{1}}$ Koc = (K_d/(%OM/1.724)) * 100 where K_{ads} is assumed to equal to K_d and OC% = OM%/1.724

TEXT SEARCHABLE DOCUMENT

Appendix C
Aquatic Exposure Model Outputs and Monitoring Data Summary

1. Tier I GENEEC OUTPUT

TROPICAL FRUIT

8 applications at 0.25 lb a.i./A per application, 14 day interval Parent - 90 percent upper bound on mean, lowest non sand kd, no aquatic degradation

RUN No. 1 FOR myclobutanil ON tropical f * INPUT VALUES *

RATE (#/AC) No.APPS & SOIL SOLUBIL APPL TYPE NO-SPRAY INCORP ONE(MULT) INTERVAL Kd (PPM) (%DRIFT) ZONE(FT) (IN)

.250(1.754) 8 14 2.4 142.0 AERL_B(13.0) .0 .0

FIELD AND STANDARD POND HALFLIFE VALUES (DAYS)

METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC COMBINED (FIELD) RAIN/RUNOFF (POND) (POND-EFF) (POND) (POND)

251.00 2 N/A .00- .00 .00 .00

GENERIC EECs (IN MICROGRAMS/LITER (PPB)) Version 2.0 Aug 1, 2001

GEEC	AVG GEEC	AVG GEEC	AVG GEEC	MAX 90 DAY AVG GEEC
		25 81.01		

Tropical Fruit

8 applications at 0.25 lb a.i./A per application, 14 day interval Parent - 90 percent upper bound on mean, lowest non sand kd, with aquatic degradation

RUN No. 1 FOR myclobutanil ON tropical f * INPUT VALUES *

RATE (#/AC) No.APPS & SOIL SOLUBIL APPL TYPE NO-SPRAY INCORP ONE(MULT) INTERVAL Kd (PPM) (%DRIFT) ZONE(FT) (IN)

.250(1.754) 8 14 2.4 142.0 AERL_B(13.0) .0 .0

FIELD AND STANDARD POND HALFLIFE VALUES (DAYS)

METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC COMBINED (FIELD) RAIN/RUNOFF (POND) (POND-EFF) (POND) (POND)

251.00 2 N/A .00- .00 502.00 502.00

GENERIC EECs (IN MICROGRAMS/LITER (PPB)) Version 2.0 Aug 1, 2001

PEAK MAX 4 DAY MAX 21 DAY MAX 60 DAY MAX 90 DAY GEEC AVG GEEC AVG GEEC AVG GEEC AVG GEEC 82.28 82.10 81.02 78.63 76.89

<u>Okra</u>

okra 0.125 lb ai/ac 4 times 10 day interval

90 percent upper bound mean asm, kd lowest non sand, no aquatic degradation

RUN No. 1 FOR myclobutanil ON okra * INPUT VALUES *

RATE (#/AC) No.APPS & SOIL SOLUBIL APPL TYPE NO-SPRAY INCORP ONE(MULT) INTERVAL Kd (PPM) (%DRIFT) ZONE(FT) (IN)

.125(.480) 4 10 2.4 142.0 AERL_B(13.0) .0 .0

FIELD AND STANDARD POND HALFLIFE VALUES (DAYS)

METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC COMBINED (FIELD) RAIN/RUNOFF (POND) (POND-EFF) (POND) (POND)

251.00 2 N/A .00- .00 .00 .00

GENERIC EECs (IN MICROGRAMS/LITER (PPB)) Version 2.0 Aug 1, 2001

PEAK MAX 4 DAY MAX 21 DAY MAX 60 DAY MAX 90 DAY GEEC AVG GEEC AVG GEEC AVG GEEC

22.35 22.32 22.17 21.83 21.58

<u>Okra</u>

Okra 0.125 lb ai/ac 4 times 10 day interval

RUN No. 3 FOR myclo

ON okra

* INPUT VALUES *

RATE (#/AC) No.APPS & SOIL SOLUBIL APPL TYPE NO-SPRAY INCORP ONE(MULT) INTERVAL Kd (PPM) (%DRIFT) ZONE(FT) (IN)

.125(.480) 4 10 2.4 142.0 AERL_B(13.0) .0 .0

FIELD AND STANDARD POND HALFLIFE VALUES (DAYS)

METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC COMBINED (FIELD) RAIN/RUNOFF (POND) (POND-EFF) (POND) (POND)

251.00 2 N/A .00- .00 502.00 502.00

GENERIC EECs (IN MICROGRAMS/LITER (PPB)) Version 2.0 Aug 1, 2001

PEAK MAX 4 DAY MAX 21 DAY MAX 60 DAY MAX 90 DAY GEEC AVG GEEC AVG GEEC AVG GEEC

22.28 22.23 21.93 21.29 20.81

ARTICHOKES

6 applications at 0.10 lb a.i./A, 14 day interval, 90 percent upper bound mean asm, kd lowest non sand, no aquatic degradation

RUN No. 3 FOR myclobutanil ON artichoke * INPUT VALUES *

RATE (#/AC) No.APPS & SOIL SOLUBIL APPL TYPE NO-SPRAY INCORP ONE(MULT) INTERVAL Kd (PPM) (%DRIFT) ZONE(FT) (IN)

.100(.546) 6 14 2.4 142.0 AERL_B(13.0) .0 .0

FIELD AND STANDARD POND HALFLIFE VALUES (DAYS)

METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC COMBINED (FIELD) RAIN/RUNOFF (POND) (POND-EFF) (POND) (POND)

251.00	2	N/A	.00-	.00	.00	.00

GENERIC EECs (IN MICROGRAMS/LITER (PPB)) Version 2.0 Aug 1, 2001

-			MAX 21 DAY AVG GEEC		MAX 90 DAY AVG GEEC
25.62	25.59	25.42	25.03	24.75	

Artichokes

6 applications at 0.10 lb a.i./A, 14 day interval, 90 percent upper bound mean asm, kd lowest non sand, with aquatic degradation

RUN No. 4 FOR myclobutanil ON artichokes *INPUT VALUES *

RATE (#/AC) No.APPS & SOIL SOLUBIL APPL TYPE NO-SPRAY INCORP ONE(MULT) INTERVAL Kd (PPM) (%DRIFT) ZONE(FT) (IN)

.100(.546) 6 14 2.4 142.0 AERL_B(13.0) .0 .0

FIELD AND STANDARD POND HALFLIFE VALUES (DAYS)

METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC COMBINED (FIELD) RAIN/RUNOFF (POND) (POND-EFF) (POND) (POND)

251.00 2 N/A .00- .00 502.00 502.00

GENERIC EECs (IN MICROGRAMS/LITER (PPB)) Version 2.0 Aug 1, 2001

 	Y MAX 21 DAY AVG GEEC	
	5.11 24.37	

LETTUCE

3 crops with 4 applications at 0.124 lb a.i./A per crop, 14 day interval, 90 percent upper bound mean asm, kd lowest non sand, no aquatic degradation

RUN No. 1 FOR myclobutanil ON lettuce * INPUT VALUES * RATE (#/AC) No.APPS & SOIL SOLUBIL APPL TYPE NO-SPRAY INCORP ONE(MULT) INTERVAL Kd (PPM) (%DRIFT) ZONE(FT) (IN) 2.4 142.0 AERL_B(13.0) .0 .0 .125(1.224) 12 14 FIELD AND STANDARD POND HALFLIFE VALUES (DAYS) METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC COMBINED (FIELD) RAIN/RUNOFF (POND) (POND-EFF) (POND) (POND) .00-.00 .00 .00 251.00 2 N/A GENERIC EECs (IN MICROGRAMS/LITER (PPB)) Version 2.0 Aug 1, 2001 MAX 4 DAY MAX 21 DAY MAX 60 DAY MAX 90 DAY **PEAK GEEC** AVG GEEC AVG GEEC AVG GEEC AVG GEEC 58.55 58.48 58.09 57,21 56.57 Lettuce 3 crops with 4 applications at 0.124 lb a.i./A per crop, 14 day interval, 90 percent upper bound mean asm, kd lowest non sand, with aquatic degradation RUN No. 1 FOR myclobutanil ON lettuce * INPUT VALUES * RATE (#/AC) No.APPS & SOIL SOLUBIL APPL TYPE NO-SPRAY INCORP ONE(MULT) INTERVAL Kd (PPM) (%DRIFT) ZONE(FT) (IN) .125(1.224) 12 14 2.7 142.0 AERL_B(13.0) .0 .0 FIELD AND STANDARD POND HALFLIFE VALUES (DAYS) METABOLIC DAYS UNTIL HYDROLYSIS PHOTOLYSIS METABOLIC COMBINED (FIELD) RAIN/RUNOFF (POND) (POND-EFF) (POND) (POND) 251.00 N/A .00- .00 502.00 502.00 2

GENERIC EECs (IN MICROGRAMS/LITER (PPB)) Version 2.0 Aug 1, 2001

PEAK MAX 4 DAY MAX 21 DAY MAX 60 DAY MAX 90 DAY GEEC AVG GEEC AVG GEEC AVG GEEC

56.41 56.28 55.50 53.79 52.54

TIER II PRZM/EXAMS SIMULATION OUTPUTS

CA - Artichokes - Air

```
stored as CAArtAir.out
Chemical: Myclobutanil
PRZM environment: CARowCropRLF.txt modified Tueday, 20 February 2007 at 12:04:10
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23234.dvf modified Wedday, 3 July 2002 at 09:04:22
Water segment concentrations (ppb)
                                                   21 Day 60 Day
2.505 2.428
5.494 5.41
9.184 9.078
                                                                                     90 Day Yearly
2.388 1.744
5.265 4.18
9.003 7.764
                                 2.518
5.538
9.253
                                                                                                      1.744
4.18
7.764
9.193
                 2.523
5.549
9.27
 1961
 1962
1963
                                                   9.184
10.13
11.87
12.58
15.26
15.3
15.26
15.75
15.52
                 10.2
11.96
12.67
15.39
                                  10.19
                                                                     10.04
11.76
12.46
                                                                                     9.971
11.69
12.39
 1964
                                  12.65
 1966
                                                                                                       11.69
 1967
1968
                                  15.36
15.39
                                                                     15.22
15.2
                                                                                     15.15
15.11
                                                                                                       13.84
14.13
                                                                    15.2
15.16
15.66
15.41
14.88
15.06
16.35
17.3
16.69
                 15.38
15.88
                                  15.36
15.86
                                                                                     15.07
15.56
 1969
                                                                                                      14.11
1970
1971
                                  15.6
15.08
                                                                                      15.32
                 15.63
                                                                                                      14.36
13.97
                 15.1
15.28
16.57
 1972
                                                   15
                                                                                     14.8
                                                                                     14.96
16.27
                                   15.25
                                                   15.16
                                                                                                       14.08
                                                   15.16
16.45
17.39
16.79
16.17
17.26
16.45
17.19
                                  16.55
17.5
16.89
 1974
                                                                                                      15
                                                                                                      15.83
15.57
1975
1976
                 17.53
16.91
                                                                                     17.2
16.6
                                                                    16.06
17.11
16.35
17.09
                 16.28
17.4
                                  16.26
17.37
                                                                                     15.98
16.94
                                                                                                      15.1
15.71
 1977
 1978
1979
                                  16.55
17.29
16.57
19.31
                 16.58
                                                                                     16.27
17
                                                                                                      15.51
15.94
15.5
                 17.31
16.59
 1980
                                                                     16.37
1982
                 19.34
                                                   19,21
                                                                     19.12
                                                                                     19.01
                                                                                                      17.46
                 19.53
18.32
                                                   19.39
18.18
                                                                     19.22
18.09
                                                                                     19.09
17.98
                                                                                                      17.87
16.96
 1983
                                  19.5
                                  18.29
 1984
 1985
                 17.56
17.04
                                  17.54
17.01
                                                   17.43
16.91
                                                                    17.34
16.81
                                                                                     17.24
16.72
                                                                                                      16.31
                                                                                                      15.78
                                  16.3
17.1
16.21
                                                                    16.1
16.88
16.01
1987
                 16.33
                                                   16.19
                                                                                     16
                                                                                                      15.02
                                                                                     16.73
1988
1989
                 17.12
16.23
                                                   16.98
16.11
                                                                                                      15.38
1990
                16.79
                                  16.77
                                                   16.65
                                                                    16.39
                                                                                     16.25
                                                                                                      15.28
Sorted(results
                                                                   60 Day
19.5
19.31
18.29
17.54
17.5
17.37
                                                                                                      Yearly
19.22
19.12
18.09
17.34
17.3
17.11
Prob. Peak 96 hr 0.032258064516129
                                                   21 Day
19.53
                                                                                     90 Day
19.39
                                                   19.53
19.34
18.32
17.56
17.53
17.4
17.31
17.12
17.04
0.0645161290322581
0.0967741935483871
0.129032258064516
                                                                                     19.21
18.18
17.43
                                                                                                                       19.01
17.98
17.24
                                                                                                                                       17.46
16.96
                                                                                                                                         16.31
                                                                                     17.39
17.26
17.19
                                                                                                                                        15.94
15.83
                                                                                                                       17.2
                                                                                                                       17.2
17
16.94
                                                                                                                                        15.78
15.71
15.57
                                                                    17.1
17.01
                                                                                                      16.88
16.81
16.69
                                                                                                                       16.73
16.72
                                                                                                                       16.6
                                                                                                                                        15.51
                                                                                                                                        15.5
```

18.244 18.215 18.105 18.015 17.906 16.895

13.7847 Average of yearly averages:

^{0.161290322580645} 0.193548387096774 0.225806451612903 17.19 16.98 16.91 16.65 16.47 16.45 16.45 0.258064516129032 0.258064516129032 16.89 16.77 16.57 16.91 16.79 16.59 0.32258064516129 0.354838709677419 0.387096774193548 16.39 16.37 16.27 16.27 15.38 16.58 16.57 16.55 16.55 16.35 16.35 16.27 16.25 15.28 15.14 0 419354838709677 0.451612903225806 0.483870967741936 16.33 16.3 16.1 16 15.1 0.516129032258065 0.548387096774194 16.26 16.21 16.28 16.17 16.06 15.98 15.02 16.23 15.88 15.63 15.41 15.39 15.38 15.91 15.56 15.32 16.11 15.75 15.52 16.01 15.86 15.6 15.39 15.36 15.66 15.41 15.22 0.580645161290323 14.41 0.645161290322581 15.3 15.15 14.13 0.64741935483871 0.709677419354838 0.741935483870968 0.774193548387097 15.26 15.26 15.2 15.16 15.11 15.07 14.11 14.08 15.38 15.28 15.1 12.67 11.96 10.2 9.27 15.25 15.16 15.06 14.96 13.97 14.8 12.39 15.08 14.88 12.58 12.46 11.76 10.04 9.078 5.41 2.428 0.806451612903226 12.65 11.69 11.94 10.19 9.253 5.538 2.518 11.87 10.13 9.184 5.494 2.505 0.838709677419355 0.870967741935484 11.69 10.71 9.193 7.764 0.903225806451613 0.935483870967742 0.967741935483871 9.003 5.549 2.523

```
Inputs generated by pe5.pl - Novemeber 2006
```

```
Data used for this run:
Output File: CAArtAir
Metfile: w23234.dvf
PRZM scenario: CARowCropRLF.txt
EXAMS environment file: p
                                          pond298.exv
Chemical Name: Myclobutanil
Description Variable Name
                                          Value
                                                     Units Comments
Molecular weight
                               mwt:
                                          288.8
                                                     a/mol
Henry's Law Const.
Vapor Pressure vapr
                                henry
                                                     atm-m^3/mol
                                           torr
Solubility
Kd Kd
                  sol
2.39
                                142
                                          mg/L
                                mg/L
Koc Koc mg/L
Photolysis half-life kdp
Aerobic Aquatic Metabolism
                                ma/L
                                                               Half-life
days Halfife
                                                     days
502
                                           kbacw
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                          kbacs
asm
                                                                days
                                                                          Halfife
                                                                days
                                                     251
                                                     Half-life
Hvdrolvsis:
                  рH 7
2
                                           davs
                                integer See PRZM manual
DEPI cm
Method: CAM
Incorporation Depth:
                               DEPI
TAPP
Application Rate: TAPP
Application Efficiency:
Spray Drift DRFT 0.05
                                                     kg/ha
                                           0.112
                                          APPEFF 0.95 fraction
fraction of application rate applied to pond
                                                             or dd/mmm or dd-mmm
Set to 0 or delete line for single app.
Application Date
                               Date
                                          1-3
                                                     dd/mm
Interval 1
                     interval
                                           14
                                                     days
                                          kg/ha
14
                     apprate 0.112 interval
app. rate 1
Interval 2
                                                     days
                                                                Set to 0 or delete line for single app.
                                           kg/ha
app. rate 2
                     apprate 0.112
                                                                Set to 0 or delete line for single app.
Interval 3
                     interval
                                           1 4
                                                     days
                                           kg/ha
14
app. rate
              3
                      apprate 0.112
Interval 4
                                                     days
                                                                Set to 0 or delete line for single app.
                     interval
                                          14
kg/ha
14
                     apprate 0.112
interval
app. rate of Interval 5
              4
                                                                Set to 0 or delete line for single app.
                                                     days
app. rate 5
Record 17:
IPSCND
                     apprate 0.112
FILTRA
                                          kg/ha
          UPTKF
Record 18:
                     PLVKRT
          PLDKRT
          FEXTRC 0.5
Flag for Index Res. Run IR Flag for runoff calc. RUNOFF none
                                                     EPA Pond
                                                     none, monthly or total (average of entire run)
```

CA - Artichokes - Ground

```
stored as CAArtGRD.out
Chemical: Myclobutanil
PRZM environment: CARowCropRLF.txt modified Tueday, 20 February 2007 at 12:04:10
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23234.dvf modified Wedday, 3 July 2002 at 09:04:22
Water segment concentrations (ppb)
```

```
21 Day 60 Day 90 Day Yearly
                   96 hr
Year
         Peak
                            1.509
                                      1.356
3.592
                                                1.269
3.445
         1.521
                   1.518
                                                          0.9183
         3.699
                   3,691
                                                          2.459
1962
         6.47
6.754
                   6.458
6.745
                             6.436
6.723
                                       6.382
                                                 6.314
                                                          5.378
1964
                                       6.695
                                                6.666
                                                          6.212
          8.031
                   8.019
                             8.001
                                                 7.891
                                                          7.241
1965
         8.661
10.77
1966
                   8.648
                             8.616
                                       8.288
                                                8.173
                                                          7.801
1967
                   10.76
                             10.74
                                       10.68
                                                10.66
                                                          9.684
                                       10.47
10.15
1968
         10.58
                   10.56
                             10.53
                                                10.39
                                                          9.722
          10.26
                   10.24
                             10.22
                                                 10.07
                                                          9.457
1969
         10.66
10.17
                   10.65
10.16
                             10.61
10.13
                                       10.53
10.08
1970
                                                10.45
                                                          9.625
                                                          9.396
1971
                                                10.01
                             9.442
9.531
                                                9.336
9.392
1972
          9.479
                   9.467
                                       9.403
                                                          8.85
                                       9.472
                                                          8.868
1973
         9.574
                   9.56
         10.9
11.78
1974
                   10.88
                             10.84
                                       10.76
                                                10.67
                                                          9.74
                                       11.64
                                                          10.51
                   11.76
                                                 11.54
1975
                             11.73
                                       10.91
10.22
1976
         11.02
                   11.01
                             10.97
                                                10.83
                                                          10.16
                                                          9.635
         10.32
                   10.3
                             10.28
                                                10.15
1977
         11.49
10.68
                   11.48
10.66
                             11.41
10.62
                                       11.26
10.55
                                                          10.28
10.06
1978
                                                11.14
                                                10.46
1979
                             11.4
10.6
1980
          11.45
                   11.43
                                       11.33
                                                11.25
                                                          10.52
                                       10.54
                                                10.47
                                                          10.05
         10.64
                   10.63
1981
```

```
11.18
10.44
                                     11.08
10.32
         10.45
                            10.4
                                              10.23
                                                       9.625
         11.31 \\ 10.41
                  11.29
10.4
1988
                            11.24
                                     11.13
                                              11.02
                                                       10.05
                            10.36
                                     10.29
                                              10.22
1990
         10 96
                  10.94
                            10.86
                                     10.69
                                              10.56
                                                      , 9, 942
Sorted results
Prob. Peak 96 0.032258064516129
                  96 hr
                            21 Day
                                     60 Day
                                              90 Day
                                                       Yearly
                            13.6
13.58
                                     13.58
13.56
                                              13.53
13.49
                                                       13.4
13.4
                                                                13.32
13.28
                                                                         12.49
0.0645161290322581
                                                                         12.06
                            12.54
11.78
                                     12.52
11.76
                                              12.48
11.73
                                                                12.28
11.54
0.0967741935483871
                                                       12.38
                                                                         11.64
0.129032258064516
                                                       11.64
                                                                          10.96
                            11.74
11.49
                                              11.69
11.41
                                                       11.61
11.33
                                                                11.52
11.25
0.161290322580645
                                     11.72
                                                                          10.52
0.193548387096774
                                     11.48
                                                                          10.51
0.225806451612903
0.258064516129032
                                     11.43
11.29
                            11.45
                                              11.4
                                                       11.26
                                                                11.14
                                                                          10.41
                                              11.24
                            11.31
                                                       11.13
                                                                11.02
                                                                          10.28
                                     11.18
11.01
                                              11.15
10.97
                                                                11
10.83
0.290322580645161
                            11.19
                                                       11.08
                                                                          10.16
0.32258064516129
                            11.02
                                                       10.91
                                                                         10.06
0.354838709677419
0.387096774193548
                            10.96
                                     10.94
                                              10.86
                                                       10.76
                                                                10.67
                                                                          10.05
                                     10.88
                                                       10.69
                                                                10.66
                            10.9
                                              10.84
                                                                         10.05
0.419354838709677
                            10.77
                                     10.76
                                              10.74
                                                       10.68
                                                                10.56
                                                                          9.942
0.451612903225806
                            10.68
                                     10.66
                                              10.62
                                                       10.55
                                                                10.47
                                                                         9.802
0.483870967741936
                            10.66
                                     10.65
                                              10.61
                                                       10.54
                                                                10.46
0.516129032258065
                                                                         9.722
                            10.64
                                     10.63
                                              10.6
                                                       10.53
                                                                10.45
0.548387096774194
                            10.58
                                     10.56
                                              10.53
                                                       10.47
                                                                10.39
                                                                          9.684
0.580645161290323
                            10.45
                                     10.44
                                              10.4
                                                       10.32
                                                                10.23
                                                                         9.635
0.612903225806452
                            10.41
                                     10.4
                                              10.36
                                                       10.29
                                                                10.22
                                                                          9.625
                                              10.28
0.645161290322581
                            10.32
                                     10.3
                                                       10.22
                                                                10.15
                                                                         9.625
0.67741935483871
                            10.26
                                     10.24
                                                                10.07
                                                       10.15
                                                                         9.457
                           10.17
9.574
0.709677419354839
                                     10.16
                                              10.13
                                                       10.08
                                                                10.01
                                                                         9.396
0.741935483870968
                                     9.56
                                              9.531
                                                       9.472
                                                                9.392
                                                                         8.868
                                                                         8.85
0.774193548387097
                            9.479
                                     9.467
                                              9.442
                                                       9.403
                                                                9.336
                                                       8.288
0.806451612903226
                                                                8.173
                                                                          7.801
                            8.661
                                     8.648
                                              8.616
0.838709677419355
0.870967741935484
                            8.031
6.754
                                     8.019
6.745
                                              8.001
6.723
                                                                         7.241
6.212
                                                       7.955
                                                                7.891
                                                       6.695
                                                                6.666
                                                       6.382
3.592
                                                                         5.378
2.459
0.903225806451613
                            6.47
                                     6.458
                                              6.436
                                                                6.314
                            3.699
0.935483870967742
                                     3.691
                                              3.656
                                                                3.445
0.967741935483871
                            1.521
                                     1.518
                                              1.509
                                                       1.356
                                                                1.269
                                                                         0.9183
         12.464 12.444 12.405 12.306 12.206 11.572
                                                                                  9.11817666666667
                                              Average of yearly averages:
Inputs generated by pe5.pl - November 2006
Data used for this run:
Output File: CAArtGRD
Metfile: w23234.dvf
PRZM scenario: CARowCropRLF.txt
Metfile:
EXAMS environment file:
                                    pond298.exv
Chemical Name: Myclobutanil
Description Var
Molecular weight
                  Variable Name
                                    Value
                                             Units
                                                       Comments
                                     288.8
                                              g/mol
                          mwt
Henry's Law Const.
Vapor Pressure vapr
                           henry
                                              atm-m^3/mol
                                     torr
Solubility sol
Kd Kd 2.39
                           142
                                     mg/L
       кa
                           mg/L
                           mg/L
        Koc
Photolysis half-life
                                                       Half-life
                                              days
                           kdp
                                                                Halfife
Aerobic Aquatic Metabolism
                                     kbacw
                                              502
                                                       days
Anaerobic Aquatic Metabolism
                                     kbacs
                                                       days
                                                                Halfife
                                                       days
Aerobic Soil Metabolism
                                              251
                                                                Halfife
Hydrolysis:
Method: CAM
                рН 7
2
                                              Half-life
                                     days
                           integer See PRZM manual
Incorporation Depth:
                          DEPI
                                             cm
                           TAPP
Application Rate:
                                     0.112
                                              kg/ha
Application Efficiency:
Spray Drift DRFT 0
                                    APPEFF 0.99 fraction
fraction of application rate applied to pond
                           0.01
Application Date
                           Date
                                     1-3
                                             dd/mm or dd/mmm or dd-mm or dd-mmm
Interval 1
app. rate 1
Interval 2
                                     14
                                                       Set to 0 or delete line for single app.
                  interval
                                             days
                                    kg/ha
14
                  apprate 0.112
interval
```

days

kg/ha

apprate 0.112

app. rate 2

Set to 0 or delete line for single app.

12.06

12.49

11.64

10.96

10.41

13.28

13.32 12.28

11.52

11

1982

1983

1984

1986

13.58

12.54

11.74

11.19

13.6

13.56

13.58

12.52

11.72

13.49

13.53 12.48

11.69

11.15

13.4

13.4 12.38

```
Interval 3
                    interval
                                                  days
                                                            Set to 0 or delete line for single app.
                                        kg/ha
app. rate 3
Interval 4
                    apprate 0.112
interval
                                                  days Set to 0 or delete line for single app.
app. rate 4
Interval 5
app. rate 5
Record 17:
                                        kg/ha
14
kg/ha
                    apprate 0.112
                                                  days
                                                            Set to 0 or delete line for single app.
                    interval
                    apprate 0.112
FILTRA
          IPSCND
UPTKF
Record 18:
PLDKRT
                   PLVKRT
FEXTRC 0.5

Flag for Index Res. Run IR EPA Pond

Flag for runoff calc. RUNOFF none none, monthly or total(average of entire run)
```

CA - Lettuce air

stored as CALetAir.out
Chemical: Myclobutanil
PRZM environment: CAlettuceSTD.txt modified Tueday, 21 February 2006 at 14:38:22
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23273.dvf modified Wedday, 3 July 2002 at 09:04:22
Water segment concentrations (ppb)

Water	segment	concent	rations	(ppb)				
Water Year 1961 1962 1963 1964 1965 1966 1967 1971 1972 1973 1974 1975 1977 1978 1979 1981 1982 1983 1988 1988 1988	Peak 24.77 28.99 42.22 57.18 65.68 71.74 71.82 72.66 74.29 84.94 84.32 84.49 82.55 103 104 108 105 112 106 102 101 92.97 87.64 81.41 79.17 80.15 81.26 82.83	96 hr 24.7 28.95 42.17 57.09 65.61 71.64 71.73 72.55 74.19 84.83 84.37 82.45 103 103 108 105 111 106 102 101 92.86 87.55 81.33 79.07 80.05 81.18 82.72 80.66	21 Day 24.42 28.83 42.01 56.72 65.26 71.38 72.27 73.95 83.55 83.75 83.75 83.75 83.75 83.67 79.79 80.83 80.98 78.67 79.79 80.83 82.48 80.33	(ppb) 60 Day 16.51 28.75 41.91 55.6 61.18 66.76 71.01 72.06 73.53 76.32 82.82 81.34 81.6 90.98 103 104 109 105 101 100 92.12 86.62 80.28 76.79 79.32 80.44 82.01 79.68	90 Day 12.17 28.69 41.83 51.24 58.33 63.77 70.94 70.65 73.2 73.09 82.34 77.86 81.47 86.51 102 105 101 99.85 91.76 86.64 79.94 76.5 79.04 80.08 81.58 79.33	Yearly 4.537 27.81 39.36 44.26 55.82 69.06 66.48 71.03 79.06 82.71 98.12 96.37 99.82 101 95.53 89.43 876.47 73.93 77.45 78.33 77.45 78.33 75.45		
Prob. 0.0322 0.0645 0.0967 0.1290 0.1935 0.2258 0.2580 0.2903 0.3225 0.3548 0.3548 0.4516 0.4838	71.96 I results Peak 58064516 16129032 74193548 9322258064 948387096 16451612 1625806	96 hr 5129 22581 33871 4516 0645 5774 2903 2032 5161 29 7419 8548 6677 6806	71.64 21 Day 112 108 106 105 104 103 102 101 92.97 87.64 84.94 84.32 82.83 82.55 81.41	71.48 60 Day 111 108 106 105 103 102 101 92.86 87.55 84.83 84.37 84.21 82.72 82.45 81.33	90 Day 111 108 106 105 103 102 102 101 92.64 83.88 83.75 83.55 82.48 82.15 80.98	Yearly 109 106 105 104 103 101 100 92.12 90.98 86.62 82.82 82.01 81.6 81.34 80.44 80.28	108 105 105 103 102 101 99.85 91.76 86.64 86.51 82.34 81.47 80.08 79.94 79.33	103 101 99.82 98.12 96.37 96.21 95.53 89.43 84.08 82.71 80.41 79.06 78.93 78.33 77.45 76.47

```
80.74
80.15
                                           80.33
79.79
                                                    79.32
76.79
                                                             77.86
76.5
0.580645161290323
                                   80.66
                                                                     75.03
                                                                     73.93
                                   80.05
0.612903225806452
0.645161290322581
                          79.17
                                   79.07
                                           78.67
                                                    76.32
                                                             73.2
                                                                     71.09
                                           73.95
                                                    73.53
                                                             73.09
                                                                     71.03
0.67741935483871
                          74.29
                                   74.19
0.709677419354839
                                   72.55
                                           72,27
                                                    72.06
                                                                     69.06
0.741935483870968
                          71.96
                                   71.89
                                           71.64
                                                    71.48
                                                             70.94
                                                                     68.28
                                                                     66.48
                          71.82
                                           71.38
                                                    71.01
                                                             70.65
                          71.74
0.806451612903226
                                   71.64
                                           71.23
                                                    66.76
                                                             63.77
                                                                     62.32
                          65.68
                                           65.26
                                                    61.18
                                                                     55.82
0.838709677419355
0.870967741935484
                          57.18
                                   57.09
                                           56.72
                                                    55.6
                                                             51.24
                                                                     44.26
0.903225806451613
                          42.22
                                           42.01
                                                    41.91
0 935483870967742
                          28.99
                                   28.95
                                           28.83
                                                    28.75
                                                             28.69
                                                                     27.81
                          24.77
                                   24.7
                                           24.42
                                                    16.51
0.967741935483871
                                                             12.17
        105.9 105.9
                          105.9
                                  104.9
                                           104.8
                                           Average of yearly averages:
                                                                              74.0459
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: CALetAir
Metfile: w23273.dvf
PRZM scenario: CAlettuceSTD.txt
EXAMS environment file:
                                  pond298.exv
Chemical Name: Myclobutanil
Description Variable Name
                                  Value
                                                   Comments
Molecular weight
Henry's Law Const.
Vapor Pressure vapr
Solubility sol
                          mwt.
                                  288.8
                                           g/mol
                                           atm-m^3/mol
                          henry
                                   torr
                                  mg/L
      Kď
кd
                 2.39
                          mg/L
Koc
        Koc
                          mg/L
Photolysis half-life
                          kdp
                                           davs
                                                    Half-life
                                                            Halfife
Aerobic Aquatic Metabolism
                                   kbacw
                                           502
                                                    days
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                  kbacs
                                                    days
                                                            Halfife
                                           251
                                                            Halfife
                                   asm
                                                    days
                 рH 7
2
Hydrolysis:
                                  days
                                           Half-life
Method: CAM
                          integer See PRZM manual
Incorporation Depth:
                          DEPI
Application Rate:
Application Efficiency:
Corea Drift DRFT 0.05
                          TAPP
                                   0.14
                                           kg/ha
                                  APPEFF
                                           0.95
                                                    fraction
                                  fraction of application rate applied to pond
                                                  or dd/mmm or dd-mmm
Set to 0 or delete line for single app.
                                           dd/mm
Application Date
                          Date
                                   20-2
                 interval
                                  14
Interval 1
                                           days
                                  kg/ha
app. rate 1
Interval 2
                 apprate 0.14
                                                    Set to 0 or delete line for single app.
                 interval
                                  14
                                           days
           2
                 apprate 0.14
                                   kg/ha
app. rate
                                                    Set to 0 or delete line for single app.
Interval 3
                 interval
                                  14
                                           davs
                 apprate 0.14
                                   kg/ha
app. rate
                                                    Set to 0 or delete line for single app.
Interval 4
                 interval
                                  14
                                           days
                 apprate 0.14
                                  kg/ha
app. rate
                                                    Set to 0 or delete line for single app.
Interval 5
                 interval
                                  14
                                           days
                 apprate 0.14
                                  kg/ha
app. rate 5
Interval 6
                 interval
                                  14
                                           days
                                                    Set to 0 or delete line for single app.
                 apprate 0.14
                                  kg/ha
app. rate 6
Interval 7
                 interval
                                  14
                                           days
                                                    Set to 0 or delete line for single app.
app. rate 7
                 apprate 0.14
                                  kg/ha
Interval 8
                 interval
                                  14
                                           days
                                                    Set to 0 or delete line for single app.
                                  kg/ha
                 apprate 0.14
app. rate 8
Interval 9
                 interval
                                  14
                                           days
                                                    Set to 0 or delete line for single app.
                                  kg/ha
app. rate 9
                 apprate 0.14
Interval 10
                 interval
                                   14
                                           days
                                                    Set to 0 or delete line for single app.
                                  kg/ha
                 apprate 0.14
app, rate 10
Interval 11
                 interval
                                  14
                                           days
                                                    Set to 0 or delete line for single app.
                                  kg/ha
                 apprate 0.14
app. rate 11
Record 17:
                 FILTRA
        TESCND
        UPTKF
Record 18:
                 PLVKRT
        PLDKRT
```

EPA Pond

none, monthly or total (average of entire run)

0.548387096774194

FEXTRC 0.5 Flag for Index Res. Run

Flag for runoff calc. RUNOFF none

81.26

81.18

80.83

CA - Lettuce ground

stored as CALetgrd.out
Chemical: Myclobutanil
PRZM environment: CAlettuceSTD.txt modified Tueday, 21 February 2006 at 14:38:22
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23273.dvf modified Wedday, 3 July 2002 at 09:04:22
Water segment concentrations (ppb)

Macci ,	beginerie	COLLCELLE	Lacions	(PDD)				
Year	Peak	96 hr	21 Day	60 Day	90 Day	Yearly		
1961	22.98	22.91	22.63	14.37	9.816	2.732		
1962	26.59	26.54	26.38	26.14	25.95	24.44		
1963	37.64	37.6	37.52	37.3	37.05	34.41		
1964	50.82	50.73	50.39	49.27	44.64	37.78		
1965	58.5	58.42	58.11	53.84	50,78	48.42		
1966	63.89	63.79	63.4	58.66	56.33	54.1		
1967	64.23	64.14	63.83	63.22	62.99	60.22		
1968	63.29	63.22	62.83	62.67	61.23	56.88		
1969	64.76	64.67	64.36	63.68	63.43	61.07		
1970	75.36	75.25	73.91	66.25	62.76	60.68		
1971	74.77	74.67	74.24	73.35	72.75	69.86		
1972	73.84	73.73	73.27	70.66	66.92	63.86		
1973	71.94	71.86	71.77	71.28	71.04	67.79	,	
1974	93.42	93.28	91.51	80.22	75.43	71.34		
1975	93.43	93.31	92.85	92.6	92.42	87.17		
1976	97.58	97.5	96.91	95.45	94.46	85.24		
1977	94.4	94.32	93.92	92.84	91.97	88.84		
1978	101	100	99.72	98.22	97.7	92.06		
1979	95.99	95.91	95.73	95.31	95.05	89.94		
1980	91.93	91.83	91.45	90.87	90.43	85.02		
1981	90.34	90.28	90.04	89.5	89.22	84.31		
1982	81.77	81.67	81.31	80.67	80.32	77.91		
1983	76.63	76.54	76.22 70.1	75.73	75.65 69	72.46		
1984 1985	70.48 68.06	70.4 67.97	67.6	69.45 65.93	65.53	64.79 62.21		
1986	68.84	68.76	68.51	67.84	67.54	65.85		
1987	70.16	70.09	69.68	69.05	68.71	66.6		
1988	71.23	71.14	70.8	70.11	69.52	67.16		
1989	69.58	69.5	69.21	68.6	68.14	63.43		
1990	60.48	60.42	60.21	59.99	59.68	55.94		
Sorted Prob.	results Peak	96 hr	21 Day	60 Day	90 Day	Yearly		·
0.03225	8064516	129	101	100 •	99.72	98.22	97.7	92.06
0.06451	L6129032	2581	97.58	97.5	96.91	95.45	95.05	89.94
0.09677	74193548	3871	95.99	95.91	95.73	95.31	94.46	88.84
0.12903	32258064	516	94.4	94.32	93.92	92.84	92.42	87.17
	90322580		93.43	93.31	92.85	92.6	91.97	85.24
	18387096		93.42	93.28	91.51	90.87	90.43	85.02
	06451612		91.93	91.83	91.45	89.5	89.22	84.31
	54516129		90.34	90.28	90.04	80.67	80.32	77.91
	22580645		81.77	81.67	81.31	80.22	75.65	72.46
	30645161		76.63 75.36	76.54	76.22 74.24	75.73	75.43	71.34 69.86
	38709677 96774193		74.77	75.25 74.67	73.91	73.35 71.28	72.75 71.04	67.79
	4838709		73.84	73.73	73.27	70.66	69.52	67.16
	12903225		71.94	71.86	71.77	70.11	69	66.6
	2200225		71.23			69.45	68.71	65.85
	70967741	936						
	70967741 29032258			71.14 70.4	70.8 70.1			
0.51612	29032258	065	70.48	70.4	70.1	69.05	68.14	64.79
0.51612 0.54838	29032258 37096774	065 194	70.48 70.16	70.4 70.09	70.1 69.68	69.05 68.6	68.14 67.54	64.79 63.86
0.51612 0.54838 0.58064	29032258 37096774 15161290	065 194 323	70.48 70.16 69.58	70.4 70.09 69.5	70.1 69.68 69.21	69.05 68.6 67.84	68.14 67.54 66.92	64.79 63.86 63.43
0.51612 0.54838 0.58064 0.61290	29032258 37096774 15161290 3225806	065 194 323 452	70.48 70.16	70.4 70.09 69.5 68.76	70.1 69.68 69.21 68.51	69.05 68.6 67.84 66.25	68.14 67.54 66.92 65.53	64.79 63.86 63.43 62.21
0.51612 0.54838 0.58064 0.61290 0.64516	29032258 37096774 15161290	065 194 323 452 581	70.48 70.16 69.58 68.84	70.4 70.09 69.5	70.1 69.68 69.21	69.05 68.6 67.84	68.14 67.54 66.92	64.79 63.86 63.43
0.51612 0.54838 0.58064 0.61290 0.64516 0.67741	29032258 37096774 15161290 33225806 51290322	065 194 323 452 581 71	70.48 70.16 69.58 68.84 68.06	70.4 70.09 69.5 68.76 67.97	70.1 69.68 69.21 68.51 67.6	69.05 68.6 67.84 66.25 65.93	68.14 67.54 66.92 65.53 63.43	64.79 63.86 63.43 62.21 61.07
0.51612 0.54838 0.58064 0.61290 0.64516 0.67741	29032258 37096774 15161290 3225806 51290322 9354838	065 194 323 452 581 71	70.48 70.16 69.58 68.84 68.06 64.76	70.4 70.09 69.5 68.76 67.97 64.67	70.1 69.68 69.21 68.51 67.6 64.36	69.05 68.6 67.84 66.25 65.93 63.68	68.14 67.54 66.92 65.53 63.43 62.99	64.79 63.86 63.43 62.21 61.07 60.68
0.51612 0.54838 0.58064 0.61290 0.64516 0.67741 0.70967 0.74193	29032258 37096774 15161290 3225806 51290322 9354838 77419354	065 194 323 452 581 71 839 968	70.48 70.16 69.58 68.84 68.06 64.76 64.23	70.4 70.09 69.5 68.76 67.97 64.67	70.1 69.68 69.21 68.51 67.6 64.36 63.83	69.05 68.6 67.84 66.25 65.93 63.68 63.22	68.14 67.54 66.92 65.53 63.43 62.99 62.76	64.79 63.86 63.43 62.21 61.07 60.68 60.22
0.51612 0.54838 0.58064 0.61290 0.64516 0.67741 0.70967 0.74193	29032258 37096774 15161290 33225806 51290322 9354838 77419354 35483870	065 194 323 452 581 71 839 968	70.48 70.16 69.58 68.84 68.06 64.76 64.23 63.89	70.4 70.09 69.5 68.76 67.97 64.67 64.14 63.79	70.1 69.68 69.21 68.51 67.6 64.36 63.83 63.4	69.05 68.6 67.84 66.25 65.93 63.68 63.22 62.67	68.14 67.54 66.92 65.53 63.43 62.99 62.76 61.23	64.79 63.86 63.43 62.21 61.07 60.68 60.22 56.88
0.51612 0.54838 0.58064 0.61290 0.64516 0.67741 0.70967 0.74193 0.80645	29032258 37096774 15161290 3225806 51290322 -9354838 77419354 35483870	065 194 323 452 581 71 839 968 097	70.48 70.16 69.58 68.84 68.06 64.76 64.23 63.89 63.29 60.48 58.5	70.4 70.09 69.5 68.76 67.97 64.67 64.14 63.79 63.22 60.42 58.42	70.1 69.68 69.21 68.51 67.6 64.36 63.83 63.4 62.83 60.21 58.11	69.05 68.6 67.84 66.25 65.93 63.68 63.22 62.67 59.99 58.66 53.84	68.14 67.54 66.92 65.53 63.43 62.99 62.76 61.23 59.68 56.33 50.78	64.79 63.86 63.43 62.21 61.07 60.68 60.22 56.88 55.94 54.1 48.42
0.51612 0.54838 0.58064 0.61290 0.64516 0.77419 0.774193 0.80645 0.83870 0.87096	29032258 37096774 15161290 13225806 51290322 19354838 15483870 135483870 135483870 135483870 135483870 135483870 135483870 135483870 135483870 135483870 135483870 135483870	065 194 323 452 581 71 839 968 097 226 3355	70.48 70.16 69.58 68.84 68.06 64.76 64.23 63.29 63.29 60.48 58.5 50.82	70.4 70.09 69.5 68.76 67.97 64.67 64.14 63.79 63.22 60.42 58.42 50.73	70.1 69.68 69.21 68.51 67.6 64.36 63.83 63.4 62.83 60.21 58.11 50.39	69.05 68.6 67.84 66.25 65.93 63.68 63.22 62.67 59.99 58.66 53.84 49.27	68.14 67.54 66.92 65.53 63.43 62.99 62.76 61.23 59.68 56.33 50.78 44.64	64.79 63.86 63.43 62.21 61.07 60.68 60.22 56.88 55.94 54.1 48.42 37.78
0.51612 0.54838 0.58064 0.61290 0.64516 0.77419 0.77419 0.80645 0.83870 0.87096	29032258 37096774 15161290 32225806 51290322 19354838 77419354 85483870 33548387 51612903 19677419 57741935	065 194 323 452 581 71 839 968 097 2355 484 613	70.48 70.16 69.58 68.84 68.06 64.76 64.23 63.89 63.29 60.48 55.5	70.4 70.09 69.5 68.76 64.67 64.14 63.79 63.22 60.42 58.42 50.73 37.6	70.1 69.68 69.21 68.51 67.6 64.36 63.83 63.4 62.83 60.21 58.11 50.39 37.52	69.05 68.6 67.84 66.25 65.93 63.68 63.22 62.67 59.99 58.66 53.84 49.27 37.3	68.14 67.54 66.92 65.53 63.43 62.76 61.23 59.68 56.33 50.78 44.64 37.05	64.79 63.86 63.43 62.21 61.07 60.68 60.22 56.88 55.94 54.1 48.42 37.78 34.41
0.51612 0.54838 0.58064 0.61290 0.64516 0.77419 0.77419 0.80645 0.83870 0.87090 0.90322 0.93548	29032258 37096774 15161290 32225806 51290322 193548387 135483870 13548387 11612903 19677419 157741935 15806451	065 194 323 452 581 71 839 968 097 226 3484 613 742	70.48 70.16 69.58 68.84 664.76 64.23 63.89 63.29 60.48 58.5 50.82 37.64 26.59	70.4 70.09 69.5 68.76 67.97 64.14 63.79 63.22 60.42 58.42 37.6 26.54	70.1 69.68 69.21 68.51 67.6 64.36 63.83 63.4 62.83 60.21 58.11 50.39 37.52 26.38	69.05 68.6 67.84 66.25 63.68 63.22 62.67 59.99 58.66 53.84 49.27 37.3 26.14	68.14 67.54 66.92 65.53 62.99 62.76 61.23 59.68 56.33 50.78 44.64 37.05 25.95	64.79 63.86 63.43 62.21 61.07 60.68 60.22 56.88 55.94 54.1 48.42 37.78 34.41 24.44
0.51612 0.54838 0.58064 0.61290 0.64516 0.77419 0.77419 0.80645 0.83870 0.87090 0.90322 0.93548	29032258 37096774 15161290 32225806 51290322 19354838 77419354 85483870 33548387 51612903 19677419 57741935	065 194 323 452 581 71 839 968 097 226 3484 613 742	70.48 70.16 69.58 68.84 68.06 64.76 64.23 63.89 63.29 60.48 55.5	70.4 70.09 69.5 68.76 64.67 64.14 63.79 63.22 60.42 58.42 50.73 37.6	70.1 69.68 69.21 68.51 67.6 64.36 63.83 63.4 62.83 60.21 58.11 50.39 37.52	69.05 68.6 67.84 66.25 65.93 63.68 63.22 62.67 59.99 58.66 53.84 49.27 37.3	68.14 67.54 66.92 65.53 63.43 62.76 61.23 59.68 56.33 50.78 44.64 37.05	64.79 63.86 63.43 62.21 61.07 60.68 60.22 56.88 55.94 54.1 48.42 37.78 34.41

95.831 95.751 95.549 95.063 94.256 88.673

Inputs generated by pe5.pl - Novemeber 2006

```
Data used for this run:
Output File: CALetgrd
Metfile: w23273.dvf
PRZM scenario: CAlettuceSTD.txt
Metfile:
                                   pond298.exv
EXAMS environment file:
Chemical Name: Myclobutanil
                                   Value
                                           Units Comments
Description
                 Variable Name
Molecular weight
                                    288.8
                                            g/mol
                                            atm-m^3/mol
Henry's Law Const.
Vapor Pressure vapr
                          henry
                          142
Solubility
                 sol
                                   mg/L
Kd
      Kđ
Koc
                  2.39
                          mg/L
Koc
                           mg/L
Photolysis half-life
                                                     Half-life
                                            days
                           kdp
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                    kbacw
                                            502
                                                     days
                                                              Halfife
                                   kbacs
                                                     days
                                                              Halfife
                                    asm
                                            251
Aerobic Soil Metabolism
                                                     days
                                                              Halfife
                                            Half-life
                                    davs
Hvdrolvsis:
                pH 7
Method: CAM
                           integer See PRZM manual
Incorporation Depth: DEPI
Application Rate: TAPP
Application Efficiency:
                                            cm
                                            kg/ha
0.99
                                    0.14
                                   APPEFF
                                                     fraction
                 DRFT
                                    fraction of application rate applied to pond
20-2 dd/mm or dd/mmm or dd-mmm
14 days Set to 0 or delete line for single app.
Spray Drift
                           0.01
Application Date
Interval 1 in
                          Date
                  interval
app. rate 1
                  apprate 0.14
                                    kg/ha
Interval 2
                                                     Set to 0 or delete line for single app.
                  interval
                                             days
                                   kg/ha
app. rate 2
Interval 3
                  apprate 0.14
                                    1\overline{4}
                                                     Set to 0 or delete line for single app.
                                             days
app. rate 3
Interval 4
                                   kg/ha
                  apprate 0.14
                                                     Set to 0 or delete line for single app.
                  interval
                                            days
                                   kg/ha
14
                  apprate 0.14
app. rate 4
Interval 5
                                                     Set to 0 or delete line for single app.
                                            days
                                   kg/ha
app. rate 5
                  apprate 0.14
Interval 6
                                            days
                                                     Set to 0 or delete line for single app.
                  interval
                                    14
                                   kg/ha
14
                  apprate 0.14
app. rate 6
Interval 7
                                                     Set to 0 or delete line for single app.
                                            days
                  interval
                  apprate 0.14
app. rate
                                   kg/ha
Interval 8
                                                     Set to 0 or delete line for single app.
                                            days
                  interval
                                    14
                                   kg/ha
                  apprate 0.14
app. rate 8
Interval 9
                                                     Set to 0 or delete line for single app.
                  interval
                                    14
                                            days
                  apprate 0.14
app. rate
           a
                                    kg/ha
                                                     Set to 0 or delete line for single app.
Interval 10
                                            days
                  interval
                                    14
                  apprate 0.14
app. rate 10
                                    kg/ha
Interval 11
                  interval
                                    14
                                            davs
                                                     Set to 0 or delete line for single app.
                  apprate 0.14
app. rate 11
                                    kg/ha
Record 17:
                 FILTRA
         IPSCND
         UPTKF
Record 18:
                 PLVKRT
        PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run IR Flag for runoff calc. RUNOFF none
                                            EPA Pond
                                            none, monthly or total (average of entire run)
```

CA Okra air

stored as CAORKAIR.out
Chemical: Myclobutanil
PRZM environment: CAtomato_WirrigSTD.txt modified Tueday, 29 May 2007 at 12:43:54
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23155.dvf modified Wedday, 3 July 2002 at 09:04:20
Water segment concentrations (ppb)

Year	Peak	96 hr	21 Day	60 Day	90 Day	Yearly
1961	1.384	1.38	1.363	1.315	1.275	0.8266
1962	3.172	3.164	3.131	3.045	2.979	2.384
1963	4.711	4.699	4.65	4.536	4.463	3.782
1964	4.818	4.807	4.765	4.654	4.576	4.002
1965	5.037	5.025	4.975	4.857	4.782	4.185
1966	5.487	5.473	5.414	5.286	5.192	4.648

```
5.611
6.302
         5.833
                            5.752
1971
                            6.4
                                               6.21
                                                        5.499
         6.49
                   6.475
                            6.67
6.346
                   6.766
6.425
                                     6.434
6.193
                                               6.264
6.077
1972
         6.787
                                                        5.588
1973
         6.444
                                                        5.417
1974
         6.057
                   6.04
                            5.974
                                      5.834
                                               5.806
                                                        5.347
                   6.924
                                               6.574
                                                        5.857
1975
         6.941
                            6.85
                                      6,698
                            6.454
5.966
                                     6.301
5.838
                                              6.188
5.726
                                                        5.498
5.215
1976
         6.545
                   6.525
1977
         6.032
                   6.018
1978
         6.062
                   6.046
                            5.98
                                      5.841
                                               5.732
                                                        5.083
                            5.648
1979
         5.732
5.772
5.612
                   5.715
                                     5.507
                                               5.398
                                                        4.76
                                     5.577
5.406
1980
                   5.758
                            5.703
                                               5.482
                                                        4.806
                   5.6
                            5.541
                                               5.294
                                                        4.703
1981
         5.751
5.662
                                               5.422
5.375
1982
                   5.734
                            5.663
                                      5.523
                                                        4.751
                                                        4.981
                   5.647
                            5.589
                                     5.464
1983
                  5.988
5.753
1984
         6.004
                            5.922
                                     5.788
                                               5.687
                                                        5.058
         5.766
                            5.701
                                     5.589
                                               5.495
                                                        4.937
1985
1986
         5.83
                   5.816
                            5.755
                                     5.624
                                               5.524
                                                        4.93
         6.344
                            6.259
1987
                  6.327
                                     6.123
                                               6.018
                                                        5.53
         6.735
                   6.72
                            6.658
                                     6.523
                                               6.411
                                                        5.702
1988
                  6.215
1989
         6.228
                            6.177
                                     6.049
                                               5.948
                                                        5.313
                                     5.68
         5.873
                  5.86
1990
                            5.806
                                               5.582
                                                        4.959
Sorted results
                                                        Yearly
Prob.
         Peak
                  96 hr
                            21 Day
                                     60 Day
                                              90 Day
0.032258064516129
                                     6.924
                                               6.85
                            6.941
                                                        6.698
                                                                 6.574
                                                                          5.857
                            6.787
6.735
                                     6.766
6.72
                                              6.67
6.658
                                                                 6.411
6.264
                                                                          5.702
5.588
0.0645161290322581
                                                        6.523
0.0967741935483871
                                                        6.434
                            6.545
6.49
                                              6.454
6.4
0.129032258064516
                                     6.525
                                                        6.302
                                                                 6.21
                                                                          5.53
0.161290322580645
                                     6.475
                                                        6.301
                                                                 6.188
                                                                          5.499
                            6.444
6.344
                                     6.425
6.327
                                              6.346
6.259
0.193548387096774
                                                        6.193
                                                                 6.077
                                                                          5.498
0.225806451612903
                                                        6.123
                                                                 6.018
                                                                          5.417
0.258064516129032
0.290322580645161
                                     6.254
6.215
                            6.27
                                               6.189
                                                        6.058
                                                                 5.954
                                                                          5.347
                            6.228
                                                                 5.948
                                               6.177
                                                        6.049
                                                                          5.313
0.32258064516129
0.354838709677419
                            6.062
6.057
                                     6.046
                                              5.98
                                                        5.841
                                                                 5.806
                                                                          5.215
                                               5.974
                                     6.04
                                                        5.838
                                                                 5.732
                                                                          5.196
0.387096774193548
0.419354838709677
                            6.032
                                     6.018
                                               5.966
                                                        5.834
                                                                 5.726
                                                                          5.083
                            6.025
                                              5.954
                                                                 5.706
                                     6.013
                                                        5.817
                                                                          5.061
                                                        5.788
5.756
0.451612903225806
                            6.004
                                     5.988
                                               5.922
                                                                 5.687
                                                                          5.058
0.483870967741936
                            5.98
                                     5.964
                                              5.894
                                                                 5,652
                                                                          4.981
0.516129032258065
                            5.873
                                     5.86
                                               5.806
                                                        5.68
                                                                 5.582
                                                                          4.967
                                     5.818
                                              5.755
5.752
5.703
                                                        5.624
0.548387096774194
                            5.833
                                                                 5.524
                                                                          4.959
                                     5.816
5.758
0.580645161290323
                            5.83
                                                        5.611
                                                                 5.502
                                                                           4.937
                            5.772
0.612903225806452
                                                        5.589
                                                                 5.495
                                                                          4.93
                            5.766
5.751
5.732
0.645161290322581
                                     5.753
                                               5.701
                                                                 5.482
                                                                           4.911
0.67741935483871
                                     5.734
                                              5,663
                                                        5.523
                                                                 5,422
                                                                          4.806
0.709677419354839
                                               5.648
                                                        5.507
                                                                 5.398
0.741935483870968
                            5,662
                                     5.647
                                              5.589
                                                        5.464
                                                                 5,375
                                                                          4.751
                                     5.6
5.473
5.025
0.774193548387097
                            5.612
                                               5.541
                                                        5.406
0.806451612903226
                            5,487
                                              5.414
                                                        5.286
                                                                 5.192
                                                                          4.648
0.838709677419355
                            5.037
                                              4.975
                                                        4.857
                                                                 4.782
                                                                           4.185
                                              4.765
4.65
                                                       4.654
4.536
0.870967741935484
                            4.818
                                     4.807
                                                                 4.576
                                                                          4.002
0.903225806451613
                            4.711
                                     4.699
                                                                 4.463
                                                                          3.782
                                                                 2.979
1.275
0.935483870967742
                            3.172
                                     3.164
                                              3.131
                                                        3.045
                                                                          2 384
                                                                          0.8266
0.967741935483871
                            1.384
                                     1.38
                                              1.363
                                                        1.315
         6.716 6.7005 6.6376 6.4208 6.2586 5.5822
0.1
                                              Average of yearly averages:
                                                                                   4.796553333333333
```

5.817 5.756

5.954

5.706 5.652

5.502

5,196

5.061

4.967

4.911

6.189

5.954 5.894

6.254

6.013 5.964

5.818

6.025 5.98

1967

1968

1969

1970

Inputs generated by pe5.pl - Novemeber 2006

Data used for this run: Output File: CAORKAIR Metfile: w23155.dvf

PRZM scenario: CAtomato_WirrigSTD.txt
EXAMS environment file: pond298 pond298.exv

Chemical Name: Myclobutanil

Units Variable Name Value Comments Description g/mol TOTAZ T 288.8

Molecular weight Henry's Law Const. atm-m^3/mol henry

Vapor Pressure vapr torr 142 Solubility sol mg/L 2.39 Кđ кď

mg/L Koc mg/L Koc

```
Half-life
Photolysis half-life
                        kdp
                                         days
Aerobic Aquatic Metabolism
                                 kbacw
                                         502
                                                  days
                                                         Halfife
                                                 days
                                                          Halfife
Anaerobic Aquatic Metabolism
                                kbacs
                                                  days
Aerobic Soil Metabolism
                                 asm
                                         251
                                                          Halfife
Hydrolysis: pH 7
Method: CAM 2
                                         Half-life
                                 davs
                         integer See PRZM manual
                        DEPI
Incorporation Depth:
                                         CM
Application Rate: Tapplication Efficiency:
                                 0.14
                                         kg/ha
                                                 fraction
                                 APPEFF
                                         0.95
                DRFT 0.05
Spray Drift
                                 fraction of application rate applied to pond
Application Date
                        Date
                                 1-4
                                         dd/mm or dd/mmm or dd-mmm
                interval
                                 10
                                                 Set to 0 or delete line for single app.
Interval 1
                                 kg/ha
10
                                         days
                apprate 0.14 interval
app. rate 1
Interval 2
                                         days
                                                 Set to 0 or delete line for single app.
                                 kg/ha
10
app. rate 2
Interval 3
                apprate 0.14
                                                 Set to 0 or delete line for single app.
                interval
                                         days
                                 kg/ha
                apprate 0.14
app. rate 3
Record 17:
        IPSCND
        UPTKF
Record 18:
                PLVKRT
        PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run IR Flag for runoff calc. RUNOFF none
                                         EPA Pond
                                         none, monthly or total(average of entire run)
```

CA Okra ground

stored as CAORKGRD.out Chemical: Myclobutanil modified Tueday, 29 May 2007 at 12:43:54 PRZM environment: CAtomato_WirrigSTD.txt EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w23155.dvf modified Wedday, 3 July 2002 at 09:04:20 Water segment concentrations (ppb)

```
21 Day 60 Day 90 Day Yearly 0.344 0.2959 0.2798 0.1913 1.386 1.357 1.334 1.105
         0.3468 0.3462 0.344
1.4 1.397 1.386
1961
1962
         2.433
2.111
                   2.427
                             2.406
2.095
1963
                                       2.37
                                                2.343
                                                          2.03
                                       2.062
                                                 2.035
                   2.049
                            2.032
                                      1.998
2.238
                                                1.973
1965
         2.062
                                                          1.784
          2.398
1966
         2.946
2.677
                   2.938
2.674
1967
                             2.91
                                       2.867
                                                2.821
                                                          2.519
                             2.653
                                                2.581
                                                          2.351
1968
                                       2.614
         2.565
2.886
                   2.559
                            2.532
                                      2.494
1969
                                                2.462
                                                          2,214
                                                2.325
                                                          2.179
1970
         3.234
3.579
                   3.226
3.57
                            3.188
3.519
1971
                                       3.089
                                                3.036
                                                          2.772
                                                3.296
1972
                                       3.39
                                                          2.826
         2.989
3.447
                                                2.877
1973
                   2.981
                             2.951
                                       2.91
                                                          2.635
                                       3,325
                             3.424
                                                          2.583
1974
                   3.442
1975
         3.541
                   3.534
                             3.503
                                       3.453
                                                3.406
                                                          3.116
1976
         3.149
                             3.108
                                       3,029
                                                2.985
                                                          2.73
                   3.14
                                                2.516
2.567
1977
          2.69
                   2.679
                             2.638
                                       2.562
                                                          2.444
1978
                   2.664
                             2.64
                                       2,602
                                                          2.351
         2.67
                             2.296
2.363
                                                2.226
2.276
         2.324
                                       2.257
                                                          2.021
                                       2,317
1980
         2.389
                   2.383
                                                          2.046
                             2.143
2.301
                                                2.074
2.233
1981
                                       2.104
                                                          1.928
                                       2.263
1982
         2.332
                   2.326
                                                          1.993
                                                2.42
2.402
          2.593
                   2.583
                                       2.464
1984
         2.5
                   2,494
                             2.471
                                       2.431
                                                          2.211
1985
          2.23
                                       2.191
         2,239
1986
                   2.234
                             2.214
                                       2.177
                                                2.149
                                                          1.982
         3.005
                   3.001
                             2.986
                                       2.916
                                                2.677
1987
                   3.13 2.645
                             3.107
2.632
                                      3.062
2.595
                                                3.016
2.564
                                                          2.755
2.354
1988
         3.137
         2.648
1989
1990
         2.233
                   2.229
                             2.214
                                       2.179
                                                2.152
                                                          1.969
Sorted results
                             21 Day 60 Day 90 Day Yearly
                   96 hr
Prob.
         Peak
                             3.579
3.541
                                      3.57
3.534
                                                3.519
3.503
                                                          3.453
3.39
0.032258064516129
                                                                    3,406
                                                                             3.116
0.0645161290322581
                                                                    3.296
                                                                             2.826
                                                          3.325
3.089
                                      3.442
3.226
                                                3.424
3.188
                                                                             2.772
0.0967741935483871
                             3.447
                                                                    3.284
```

3.234

```
2.73
2.635
                                                              2.985
2.877
                                   3.13
3.001
0.193548387096774
                           3.137
                                            3.107
                                                     3.029
0.225806451612903
                           3.005
                                            2.986
                                                     2.916
                                                                       2.583
                                   2.981
2.938
0.258064516129032
                           2.989
                                            2.951
                                                     2.91
                                                              2.821
                                                                       2.574
 0.290322580645161
                           2.946
                                            2.91
                                                     2.867
                                   2.88
2.679
                                            2.86
2.653
0.32258064516129
                           2.886
                                                     2.614
                                                              2.581
                                                                       2.444
0.354838709677419
                           2.69
                                                     2.602
                                                              2.567
                                                                       2.354
                           2.677
2.67
                                   2.674
2.664
                                                              2.564
2.516
0.387096774193548
                                            2.64
                                                     2.595
                                                                       2.351
0.419354838709677
                                            2.638
                                                     2.562
                                                                       2.351
                           2.648
2.593
                                   2.645
2.583
0.451612903225806
                                            2.632
                                                     2.494
                                                              2.462
                                                                       2.214
0.483870967741936
                                            2.544
                                                     2.464
                                                              2.42
                                                                       2.211
0.516129032258065
                           2.565
                                    2.559
                                            2.532
                                                     2.452
                                                              2.402
                                                                       2.179
0.548387096774194
                                    2.494
                                            2.471
                                                     2.431
                           2.5
                                                              2.343
                                                                       2.171
0.580645161290323
0.612903225806452
                                            2.406
2.382
                                                     2.37
2.317
                                                              2.325
2.276
                           2.433
                                    2.427
                                                                       2.075
                           2.398
                                    2.395
                                                                       2.046
0.645161290322581
                           2.389
                                    2.383
                                            2.363
                                                     2.263
                                                              2.233
                                                                       2.042
0.67741935483871
                                    2.326
                                                     2.257
                                                              2.226
                           2.332
                                            2.301
                                                                       2.03
0.709677419354839
                           2.324
                                    2.318
                                            2.296
                                                     2.238
                                                              2.21
                                                              2.167
0.741935483870968
                           2.239
                                    2.234
                                            2.214
                                                     2.191
                                                                       1.993
0.774193548387097
                           2.233
                                    2.229
                                            2.214
                                                     2.179
                                                              2.152
                           2.23
2.163
                                            2.211
2.143
                                                     2.177
2.104
0.806451612903226
                                    2.226
                                                              2.149
                                                                       1.969
0.838709677419355
                                    2.161
                                                              2.074
                                                                       1.928
                           2.111
2.062
                                                             2.035
1.973
0.870967741935484
                                    2.107
                                            2.095
                                                     2.062
                                                                       1.871
0.903225806451613
                                    2.049
                                            2.032
                                                     1.998
                                                                       1.784
                           1.4 1.397 1.386
0.3468 0.3462 0.344
0.935483870967742
                                                     1.357
                                                              1.334
                                                                       1.105
                                                     0.2959 0.2798 0.1913
0.967741935483871
         3.4257 3.4204 3.4004 3.3014 3.2592 2.7703
                                            Average of yearly averages:
                                                                               2.19407666666667
Inputs generated by pe5.pl - November 2006
Data used for this run:
Output File: CAORKGRD
Metfile: w23155.dvf
PRZM scenario: CAtomato_WirrigSTD.txt
                                   pond298.exv
EXAMS environment file:
Chemical Name: Myclobutanil
Description
                  Variable Name
                                   Value
                                            Units
                                                     Comments
Molecular weight
Henry's Law Const.
                                            g/mol
                          mw/t
                                   288.8
                                            atm-m^3/mol
                          henry
Vapor Pressure vapr
                                   torr
Solubility
                          142
                 sol
                                   mq/L
       кd
                 2.39
Kd
                          mg/L
Koc
        Koc
                          mg/L
Photolysis half-life
                                                     Half-life
                                            days
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                                             Halfife
                                   kbacw
                                            502
                                                     davs
                                   kbacs
                                                     days
                                                             Halfife
                                            251
                                   asm
                                                     days
                                                             Halfife
                pH 7
Hydrolysis:
                                            Half-life
                                   days
Method: CAM
                          integer See PRZM manual
Incorporation Depth:
                         DEPI
                                   0.14
Application Rate:
                          TAPP
                                            kg/ha
Application Efficiency:
                                   APPEFF
                                            0.99
                                                     fraction
                 DRFT 0.0_
Date
                                   fraction of application rate applied to pond 1-4 dd/mm or dd/mmm or dd-mmm or dd-mmm
Spray Drift DF
Application Date
                                            days
Interval 1
                 interval
                                   10
                                                    Set to 0 or delete line for single app.
                 apprate 0.14
                                   kg/ha
app. rate 1
Interval 2
                  interval
                                   10
                                            days
                                                    Set to 0 or delete line for single app.
app. rate 2
                                   ka/ha
                 apprate 0.14
Interval 3
                                                    Set to 0 or delete line for single app.
                  interval
                                            days
                                   kg/ha
                 apprate 0.14
app. rate 3
Record 17:
                 FILTRA
        IPSCND
         UPTKF
Record 18:
                 PLVKRT
        PLDKRT
        FEXTRC 0.5
                                   IR
                                            EPA Pond
Flag for Index Res.
                       Run
Flag for runoff calc. RUNOFF none
                                            none, monthly or total(average of entire run)
```

3.016

3.108

3.149

3.14

FL Okra air

0.161290322580645

stored as FLORKAIR.out

Chemical: Myclobutanil Chemical: Mycrophtalli PRZM environment: FLtomatoSTD.txt modified Tueday, 29 May 20 EXAMS environment: pond298.exv modified Thuday, 29 August Metfile: w12844.dvf modified Wedday, 3 July 2002 at 09:04:30 modified Tueday, 29 May 2007 at 12:54:10 modified Thuday, 29 August 2002 at 16:33:30 Water segment concentrations (ppb)

```
60 Day
                                                 90 Day
                              21 Day
                                                           Yearly
          5.893
9.52
                    5.867
9.488
                             5.765
9.422
                                       5.569
9.231
                                                 5.453
9.044
                                                           3.819
7.094
1961
1962
                    9.887
10.54
                             9.763
10.44
                                       9.47
1963
          9.92
                                                 9.239
                                                           7.969
1964
          10.57
                                                 10.27
                                                           8.975
                                       10.4
17.75
1965
          10.75
                    10.72
                             10.6
                                                 10.21
                                                           8.903
                              18.07
                                                 17.51
1966
          18.36
                    18.3
                                                           14.1
1967
          18.68
                    18.63
                              18.4
                                        17.9
                                                 17.61
                                                           15.32
                              15.83
                                       15.65
1968
                                                 15.44
          15.92
                    15.89
                                                           13.54
1969
          16.11
                    16.07
                              15.95
                                        15.67
                                                 15.4
                                                           13.13
                                                 22.29
1970
          23.47
                                       22.74
                    23.43
                             23.13
                                                           17.86
1971
          16.68
                    16.64
                             16.44
                                       16.11
                                                 16.07
                                                           14.8
1972
          14.99
                    14.95
                             14.87
                                       14.69
                                                 14.41
                                                           12.64
          12.45
                    12.42
                              12.28
                                       12.01
                                                 11.91
                                                           10.55
                             13.73
10.18
1974
          13.96
                   13.92
                                       13.46
                                                 13.21
                                                           10.99
1975
          10.31
                    10.28
                                       10.02
                                                 9.898
                                                           8.891
                                       13.32
12.82
                                                 13.1
12.54
                                                           10.79
10.78
1976
          13.91
                    13.86
                             13.67
          13.23
                    13.19
                              13.06
                             11.19
15.76
                                                           9.493
11.62
1978
          11.27
                    11.25
                                       10.97
                                                 10.83
          16.05
                    15.99
                                       15.26
                                                 14.87
          15.49
13.72
                   15.45
13.68
                             15.29
13.56
                                       14.99
13.23
                                                 14.77
13.06
1980
                                                           12.61
1981
                                                           11.41
                             17.4
16.77
                                                 16.79
16.28
1982
          17.61
                    17.56
                                       17.13
                                                           13.69
1983
          16.96
                                       16.5
                                                           13.85
                    16.92
1984
          19.06
                    19
                             18.89
                                       18.55
                                                 18.19
                                                           15.52
                                       19.67
                    20.14
                             19.93
                                                 19.4
                                                           16.24
1985
          20.2
1986
                   18.62
19.79
          18.66
                             18.49
                                       18.26
                                                 17.95
                                                           15.37
                             19.58
                                       19.27
                                                 18.93
                                                           15.7
1987
          19.84
1988
          16.73
                    16.69
                              16.62
                                       16.33
                                                 16.13
                                                           14.01
1989
          14.08
                   14.05
                             13.91
                                       13.51
                                                 13.24
                                                           11.79
                                                 11.79
          12.32
                   12.28
                             12.14
                                       11.96
Sorted results
Prob. Peak 96
0.032258064516129
                   96 hr
                                       60 Day
                             21 Day
                                                 90 Day
                                                           Yearly
                             23.47
20.2
                                       23.43
20.14
19.79
                                                           22.74
19.67
                                                 23.13
                                                                    22.29
                                                                              17.86
                                                                              16.24
15.7
                                                 19.93
19.58
                                                                    19.4
18.93
0.0645161290322581
0.0967741935483871
                             19.84
                                                           19.27
                             19.06
18.68
                                                 18.89
18.49
                                                           18.55
18.26
                                                                    18.19
17.95
0.129032258064516
                                       19
                                                                              15.52
                                       18.63
                                                                              15.37
0.161290322580645
0.193548387096774
0.225806451612903
                             18.66
18.36
                                       18.62
18.3
                                                 18.4
18.07
                                                           17.9
17.75
                                                                    17.61
17.51
                                                                              15.32
                                                                              14.8
0.258064516129032
0.290322580645161
                             17.61
16.96
                                       17.56
                                                 17.4
16.77
                                                           17.13
                                                                    16.79
                                                                              14.1
                                       16.92
                                                           16.5
                                                                     16.28
                                                                              14.01
0.32258064516129
0.354838709677419
                             16.73
16.68
                                       16.69
                                                 16.62
                                                           16.33
                                                                     16.13
                                                                              13.85
                                                                    16.07
                                       16.64
                                                 16.44
                                                           16.11
                                                                              13.69
0.387096774193548
0.419354838709677
                             16.11
16.05
                                       16.07
                                                 15.95
                                                           15.67
                                                                     15.44
                                                                              13.54
                                       15.99
15.89
                                                 15.83
                                                           15.65
                                                                    15.4
                                                                              13.13
0.451612903225806
0.483870967741936
                                                 15.76
15.29
                             15.92
                                                           15.26
                                                                     14.87
                                                                              12.64
                             15.49
                                       15.45
                                                           14.99
                                                                    14.77
                                                                              12.61
0.516129032258065
                             14.99
                                       14.95
                                                 14.87
                                                           14.69
                                                                    14.41
                                                                              11.79
0.548387096774194
                             14.08
                                       14.05
                                                 13,91
                                                           13.51
                                                                    13.24
                                                                              11.62
                                                                     13.21
0.580645161290323
                             13.96
                                       13.92
                                                 13.73
                                                           13.46
                                                                              11.41
                             13.91
13.72
                                       13.86
0.612903225806452
                                                 13.67
                                                           13.32
                                                                    13.1
                                                                              10.99
0.645161290322581
                                       13.68
                                                 13.56
                                                           13.23
                                                                    13.06
                                       13.19
12.42
0.67741935483871
                             13.23
                                                 13.06
                                                           12.82
                                                                    12.54
                                                                              10.78
                                                                              10.55
0.709677419354839
                             12.45
                                                 12.28
                                                           12.01
                                                                    11.91
                             12.32
11.27
                                                 12.14
11.19
                                                           11.96
10.97
0.741935483870968
                                       12.28
                                                                    11.79
                                                                              10.15
                                       11.25
                                                                     10.83
0.774193548387097
                                                                              9.493
0.806451612903226
0.838709677419355
                             10.75
10.57
                                       10.72
10.54
                                                           10.4
10.3
                                                 10.6
                                                                    10.27
                                                                              8.975
                                                 10.44
                                                                     10.21
                                                                              8.903
                             10.31
9.92
9.52
                                       10.28
9.887
                                                 10.18
9.763
9.422
0.870967741935484
                                                           10.02
                                                                    9.898
                                                                              8.891
                                                           9.47
                                                                              7.969
0.903225806451613
                                                                    9.239
                                       9.488
                                                                     9.044
                                                                              7.094
                             5.893
                                       5.867
                                                 5.765
                                                                              3.819
0.967741935483871
                                                           5.569
                                                                    5.453
         19.762 19.711 19.511 19.198 18.856 15.682
```

0.1

Average of yearly averages: 12.0534666666667

Inputs generated by pe5.pl - Novemeber 2006

```
Data used for this run:
Output File: FLORKAIR
Metfile: w12844.dvf
PRZM scenario: FLtomatoSTD.txt
EXAMS environment file:
                                   pond298.exv
Chemical Name: Myclobutanil
                  Variable Name
                                   Value
Description
                                            Units
                                                    Comments
Molecular weight
Henry's Law Const.
                                            g/mol
                          mart
                                   288.8
                          henry
                                            atm-m^3/mol
Vapor Pressure vapr
                                   torr
Solubility sol
Kd Kd 2.39
                          142
                                   mq/L
                 2.39
                          mg/L
Koc
        Koc
                          mq/L
Photolysis half-life
                                                    Half-life
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                                             Halfife
                                   kbacw
                                            502
                                                    davs
                                                    days
                                                             Halfife
                                   kbacs
                                            251
Aerobic Soil Metabolism
                                   asm
                                                    days
                                                             Halfife
                рн 7
                                            Half-life
Hydrolysis:
                                   days
Method: CAM
                          integer See PRZM manual
Incorporation Depth:
                          DEPI
                                            cm
                                   0.14
                                            kg/ha
Application Rate:
                          TAPP
Application Efficiency:
                                   APPEFF
                                            0.95
                                                    fraction
                 DRFT
Spray Drift DR
Application Date
                                   fraction of application rate applied to pond 1-2 dd/mm or dd/mmm or dd-mmm or dd-mmm
                          0.05
                          Date
Interval 1
                 interval
                                   10
                                            days
                                                    Set to 0 or delete line for single app.
app. rate 1
                  apprate 0.14
                                   kg/ha
Interval 2
                 interval
                                   10
                                            days
                                                    Set to 0 or delete line for single app.
app. rate 2
                                   kg/ha
                 apprate 0.14
Interval 3
                 interval
                                   10
                                            days
                                                    Set to 0 or delete line for single app.
                 apprate 0.14
                                   kg/ha
app. rate 3
Record 17:
                 FILTRA
        IPSCND
        UPTKF
Record 18:
                 PLVKRT
        PLDKRT
                0.5
        FEXTRC
Flag for Index Res.
                      Run
                                   IR
                                            EPA Pond
Flag for runoff calc. RUNOFF none
                                           none, monthly or total (average of entire run)
```

FL Okra ground

stored as FLORKGRD.out
Chemical: Myclobutanil
PRZM environment: FLtomatoSTD.txt modified Tueday, 29 May 2007 at 12:54:10
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w12844.dvf modified Wedday, 3 July 2002 at 09:04:30
Water segment concentrations (ppb)

```
21 Day 60 Day 90 Day Yearly
4.951 4.768 4.666 3.192
8.091 7.94 7.782 6.013
8.115 7.869 7.675 6.53
Year
          Peak
                     96 hr
          5.065
                     5.042
1961
          8.176
8.25
                     8.147
8.222
1962
1963
                     8.575
8.422
                                8.476
8.386
                                           8.393
8.197
1964
          8.598
                                                     8.275
                                                                7.318
                                                     8.046
          8.444
                                                                7.088
1965
          16.27
16.57
                     16.22
16.52
                                           15.72
15.87
1966
                                16.01
                                                     15.51
                                                                12.37
1967
                                16.32
                                                     15.63
                                                                13.56
1968
          13.56
                     13.53
                                13.46
                                           13.35
                                                     13.17
                                                                11.62
1969
          13.64
                     13.61
                                13.52
                                           13.31
                                                     13.08
                                                                11.13
                     21.32
14.46
1970
          21.36
                                21.03
                                           20.65
                                                     20.24
                                                                16.06
1971
                                14.29
                                           14.08
          14.49
                                                     13.97
                                                                12.87
                     12.65
9.972
                                          12.42
9.659
1972
           12.68
                                12.56
                                                      12.19
                                                                10.68
          9.998
                                9.865
                                                                8.542
1973
                                                     9.527
                     11.5
7.875
                                           11.14
7.722
                                                                9.013
1974
                                                     10.94
1975
          7.891
                                7.808
                                                     7.673
                                                                6.817
                                11.21
10.79
1976
                                           10.91
                                                     10.74
1977
          10.92
                     10.89
                                           10.59
                                                     10.36
                                                                8.715
                                                     8.308
12.73
12.4
          8.607
                     8.59
                                8.542
                                           8.388
                                                                 7.357
1978
                                          13.07
12.58
10.77
14.89
          13.77
12.98
                     13.72
12.94
1979
                                13.52
                                                                9.575
                                12.83
                                                                10.6
          11.16
15.34
                     11.14
15.29
                                11.04
15.09
                                                                9.361
11.77
                                                     10.64
1981
                                                     14.6
1982
1983
          14.62
                     14.59
                                14.46
                                           14.21
                                                     14.03
                                                                11.95
                                16.69
                                           16.41
                                                     16.09
1984
          16.83
                     16.78
```

```
16.39
17.59
14.39
                            16.23
17.41
14.31
                                      16.05
                                               15.78
                                                        13.51
1986
         16.42
1987
         17.64
                                      17.11
                                               16.81
                                                        13.88
         14.43
11.78
                                      14.08
                                                        12.12
1988
                                               13.9
                   11.75
9.797
                                               11.04
1989
                            11.64
                                      11.3
                                                        9.838
                            9.73
                                      9.555
                                                        8.162
1990
         9.823
                                               9.421
Sorted results
                                               90 Day
21.03
17.84
17.41
Prob. Peak 96 0.032258064516129
                            21 Day
21.36
                                     60 Day
21.32
                                                        Yearly
20.65
                  96 hr
                                                                  20.24
                                                                           16.06
                                                        17.55
17.11
                                                                 17.32
16.81
0.0645161290322581
                            18.09
                                      18.03
                                                                           14.41
0.0967741935483871
                                      17.59
                                                                           13.88
                            17.64
0.129032258064516
                            16.83
                                      16.78
                                               16.69
                                                        16.41
                                                                  16.09
                                                                           13.67
                                     16.52
0.161290322580645
                            16.57
                                               16.32
                                                        16.05
                                                                  15.78
                                                                           13.56
0.193548387096774
                            16.42
                                      16.39
                                               16.23
                                                        15.87
                                                                  15.63
0.225806451612903
                                                        15,72
                            16.27
                                      16.22
                                               16.01
                                                                  15.51
                                                                           12.87
0.258064516129032
                            15.34
                                      15.29
                                               15.09
                                                        14.89
                                               14.46
14.31
0.290322580645161
                            14.62
                                      14.59
                                                        14.21
                                                                  14.03
                                                                           12.12
0.32258064516129
                            14.49
                                      14.46
                                                        14.08
                                                                  13.97
                            14.43
13.77
                                     14.39
13.72
0.354838709677419
                                               14.29
                                                        14.08
                                                                  13.9
                                                                           11.77
                                                                  13.17
0.387096774193548
                                               13.52
                                                        13.35
                                                                           11.62
                            13.64
13.56
                                     13.61
13.53
                                                                 13.08
12.73
0.419354838709677
                                               13.52
                                                        13.31
                                                                           11.13
0.451612903225806
                                               13.46
                                                        13.07
                                                                           10.68
                                               12.83
12.56
                                                        12.58
12.42
0.483870967741936
                            12.98
                                     12.94
                                                                  12.4
                                                                           10.6
0.516129032258065
                                      12.65
                            12.68
                                                                  12.19
                                                                           9.838
                            11.78
11.54
                                     11.75
11.5
0.548387096774194
                                               11.64
                                                        11.3
                                                                  11.04
                                                                           9.575
0.580645161290323
                                                        11.14
                                                                           9.361
                                                                  10.94
                                               11.35
                            11.41
11.16
                                     11.37
11.14
                                               11.21
11.04
                                                        10.91
10.77
                                                                           9.013
8.753
0.612903225806452
                                                                  10.74
0.645161290322581
                                                                  10.64
0.67741935483871
0.709677419354839
                            10.92
9.998
                                     10.89
9.972
                                               10.79
                                                        10.59
                                                                  10.36
                                                                           8.715
                                               9.865
                                                                  9.527
                                                        9.659
                                                                           8.542
                            9.823
8.607
0.741935483870968
                                      9.797
                                               9.73
                                                        9.555
                                                                  9.421
                                                                           8.162
                                               8.542
0.774193548387097
                                     8.59
                                                                 8.308
                                                        8.393
                                                                           7.357
0.806451612903226
                            8.598
                                      8.575
                                               8.476
                                                        8.388
                                                                  8.275
                                                                           7.318
0.838709677419355
                            8.444
                                     8.422
                                                                 8.046
                                                                           7.088
                                               8.386
                                                        8.197
                                                        7.94
7.869
7.722
                                                                 7.782
7.675
0.870967741935484
                            8.25
                                      8.222
                                               8.115
                                                                           6.817
                            8.176
0.903225806451613
                                     8.147
                                               8.091
                                                                           6.53
                                               7.808
4.951
0.935483870967742
                            7.891
                                      7.875
                                                        4.768
0.967741935483871
                            5.065
                                     5.042
                                                                 4.666
                                                                           3.192
         17.559 17.509 17.338 17.04
                                              16.738 13.859
0.1
```

17.55

14.41

1985

18.09

18.03

Average of yearly averages: Inputs generated by pe5.pl - Novemeber 2006

Data used for this run: Output File: FLORKGRD Metfile: w12844.dvf PRZM scenario: FLtomatoSTD.txt

EXAMS environment file: Chemical Name: Myclobutanil pond298.exv

Description Variable Name

Value Units Comments

Molecular weight mwt 288.8 g/mol Henry's Law Const. Vapor Pressure vapr torr

Solubility 142 sol кď 2.39 ĸd mg/L Koc mg/L

Photolysis half-life kdp Aerobic Aquatic Metabolism Half-life davs Halfife 502 kbacw days Anaerobic Aquatic Metabolism Aerobic Soil Metabolism kbacs days Halfife 251 days asm Half-life days

mg/L

pH 7 Hydrolysis: Method: CAM integer See PRZM manual Incorporation Depth: DEPI cm TAPP 0.14 kg/ha

Application Rate:
Application Efficiency:
DRFT 0.01 APPEFF 0.99 fraction fraction of application rate applied to pond DRFT Application Date Date 1-2

dd/mm or dd/mmm or dd-mmm or dd-mmm days Set to 0 or delete line for single app. 10 interval Interval 1 app. rate 1 Interval 2 kg/ha 10 apprate 0.14 interval days Set to 0 or delete line for single app.

atm-m^3/mol

kg/ha app. rate 2 Interval 3 apprate 0.14 Set to 0 or delete line for single app. days interval 10

app. rate 3 apprate 0.14 kg/ha

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975	Peak 11.67 19.59 30.46 31.71 40.42 56.9 45.32 39.35 52.05 63.63 53.63 44.27 37.19 55.72 58.98	96 hr 11.62 19.53 30.35 31.6 40.35 56.68 45.23 39.23 51.86 63.43 45.22 64.18 44.16 37.06 55.51 58.7	21 Day 11.54 19.35 30.03 31.38 39.82 56.24 44.63 39.01 51.37 62.59 54.66 57.89	60 Day 11.19 18.88 29.31 30.84 38.59 55.35 43.71 38.2 50.39 61.88 51.27 44.58 61.86 43.48 36.21 53.43 56.1	11 18.54 28.78 30.51 37.74 54.24 43 37.4 49.32 60.78 50.05 44.11 60.7 43.4 35.72 52.91 54.8	7.609 14.87 23.27 25.93 30.49 43.6 39.21 33.21 41.26 45.35 38.57 49.03 40.17 32.55 41.71 45.56
	44.27			43.48	43.4	40.17
1975	37.19	37.06	36.72	36.21	35.72	32.55
	55.72					
1978	60.28	60.12	59.79	58.48	57.13	48.9
1979	58.47	58.26	57.49	55.55	54.2	46.81
1980	51.05	50.92	50.12	48.57	47.56	41.81
1981	50.61	50.43	50.13	48.85	47.77	40.94
1982	61.54	61.38	60.52	58.45	56.94	45.71
1983	81.78	81.44	80.1	78.95	77.25	60.22
1984	55.23	55.09	54.5	53.94	53.74	49.66
1985	57.27	57.06	56.27	54.46	53.16	45.28
1986	78.82	78.52	77.35	74.76	72.86	57.79
1987	113	113	111	108	105	84.7
1988	140	139	137	135	132	105
1989	101	101	99.91	98.43	98.11	89.47
1990	72.51	72.27	71.45	70.61	69.91	64.97

Sorted results						
Prob. Peak 96 hr	21 Day	60 Day	90 Day	Yearly		
0.032258064516129	140	139	137	135	132	105
0.0645161290322581	113	113	111	108	105	89.47
0.0967741935483871	101	101	99.91	98.43	98.11	84.7
0.129032258064516	81.78	81.44	80.1	78.95	77.25	64.97
0.161290322580645	78.82	78.52	77.35	74.76	72.86	60.22
0.193548387096774	72.51	72.27	71.45	70.61	69.91	57.79
0.225806451612903	64.43	64.18	63.5	61.88	60.78	49.66
0.258064516129032	63.63	63.43	62.59	61.86	60.7	49.03
0.290322580645161	61.54	61.38	60.52	58.48	57.13	48.9
0.32258064516129	60.28	60.12	59.79	58.45	56.94	48.46
0.354838709677419	58.92	58.7	57.89	56.1	54.8	46.81
0.387096774193548	58.47	58.26	57.49	55.55	54.24	45.71
0.419354838709677	57.27	57.06	56.27	55.35	54.2	45.56
0.451612903225806	56.9	56.68	56.24	54.46	53.74	45.35
0.483870967741936	55.72	55.51	54.66	53.94	53.16	45.28
0.516129032258065	55.23	55.09	54.5	53.43	52.91	43.6
0.548387096774194	53.98	53.8	53.01	51.27	50.05	41.81
0.580645161290323	52.05	51.86	51.37	50.39	49.32	41.71
0.612903225806452	51.05	50.92	50.13	48.85	47.77	41.26
0.645161290322581	50.61	50.43	50.12	48.57	47.56	40.94
0.67741935483871	45.36	45.23	44.93	44.58	44.11	40.17
0.709677419354839	45.32	45.22	44.63	43.71	43.4	39.21
0.741935483870968	44.27	44.16	43.7	43.48	43	38.57

```
0.806451612903226
                         39.35
                                 39.23
                                          39.01
                                                  38.2
                         37.19
31.71
                                          36.72
31.38
                                                  36.21
30.84
                                                          35.72
30.51
                                                                   30.49
25.93
0.838709677419355
                                 37.06
0.870967741935484
                                  31.6
0.903225806451613
                         30.46
                                 30.35
                                          30.03
                                                  29.31
                                                          28.78
                                                                   23.27
                                                                   14.87
                                  19.53
                                                  18.88
                                                          18.54
0.935483870967742
                         19.59
                                          19.35
0.967741935483871
                         11.67
                                 11.62
                                          11.54
                                                  11.19
        99.078 99.044 97.929 96.482 96.024 82.727
                                                                           46.0703
                                          Average of yearly averages:
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: PRTFAIR
Metfile:
                w11641.dvf
PRZM scenario: PRcoffeeSTD.txt
EXAMS environment file:
Chemical Name: Myclobutanil
                                 pond298.exv
Description
                Variable Name
                                 Value
                                          Units
                                                  Comments
Molecular weight
                                 288.8
                         mwt
                                          q/mol
Henry's Law Const.
Vapor Pressure vapr
                                          atm-m^3/mo1
                                 torr
                sol
2.39
Solubility
                         142
                                 mg/L
      Kď
                        mg/L
Κđ
        Koc
                         mg/L
Photolysis half-life
                                                  Half-life
                         kdp
                                          davs
Aerobic Aquatic Metabolism
                                          502
                                                  days
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                 kbacs
                                                  davs
                                                          Halfife
                                  asm
                                                  days
               рН 7
2
                                          Half-life
Hydrolysis:
                                  days
Method: CAM
                         integer See PRZM manual
                       DEPI
Incorporation Depth: Application Rate:
                                          cm
                         TAPP
                                  0.28
                                          kg/ha
Application Efficiency:
                                 APPEFF
                                         0.95
                                                  fraction
                DRFT
                         0.05
                                 fraction of application rate applied to pond
Spray Drift
Application Date
                                                or dd/mmm or dd-mm or dd-mmm
Set to 0 or delete line for single app.
                         Date
                                 1-2
                                          dd/mm
                interval
                                 14
                                          days
Interval 1
                                 kg/ha
14
app. rate 1
                 apprate 0.28
Interval 2
                                          days
                                                  Set to 0 or delete line for single app.
                 interval
app. rate 2
                 apprate 0.28
                                 kg/ha
                                                  Set to 0 or delete line for single app.
Interval 3
                 interval
                                 14
                                          days
                 apprate 0.28
app. rate
          3
                                 kg/ha
Interval 4
                                                  Set to 0 or delete line for single app.
                 interval
                                 14
                                          davs
                 apprate 0.28
                                 kg/ha
           4
app. rate
Interval 5
                 interval
                                 14
                                          days
                                                  Set to 0 or delete line for single app.
                 apprate 0.28
app. rate
           5
                                 kg/ha
                                                  Set to 0 or delete line for single app.
Interval 6
                 interval
                                 14
                                          days
                 apprate 0.28
app. rate 6
                                 kg/ha
Interval 7
                 interval
                                 14
                                          days
                                                  Set to 0 or delete line for single app.
app. rate 7
                 apprate 0.28
                                 kg/ha
Record 17:
                FILTRA
        IPSCND
        UPTKF
                PLVKRT
Record 18:
        PLDKRT
                0.5
        FEXTRC
Flag for Index Res.
                     Run
                                 IR
                                          EPA Pond
Flag for runoff calc. RUNOFF none
                                         none, monthly or total (average of entire run)
```

33.21

PR Tropical Fruit ground

0.774193548387097

40.42

40.35

39.82

```
stored as PRTFGRD.out
Chemical: Myclobutanil
PRZM environment: PRcoffeeSTD.txt
EXAMS environment: pond298.exv
Metfile: w11641.dvf modified We
                                      offeeSTD.txt modified Thuday, 23 February 2006 at 10:50:14 ad298.exv modified Thuday, 29 August 2002 at 16:33:30 modified Wedday, 3 July 2002 at 09:06:16
Water segment concentrations (ppb)
                           96 hr
                                        21 Day 60 Day 90 Day Yearly
Year
             Peak
                          8.152
13.77
                                                  7.848
13.28
                                                                 7.652
13.04
1961
             8.186
                                        8.078
                                                                                5.099
                                       13.65
                                                                               10.34
1962
             13.8
```

```
23.29
23.95
32.12
          24.25
32.63
                                                  30.36
47.16
35.27
1965
                    32.57
                                        31.11
                                                            23.93
                                                            37.32
1966
          49.81
                    49.62
                              49.13
                                        48.18
          37.26
30.96
                    37.17
                              36.69
                                        35.86
                                                            32.55
1967
1968
                    30.86
                              30.66
                                        30.02
                                                  29.42
                                                            26.16
1969
          44.14
                     43.98
                              43.54
                                        42.64
                                                   41.76
          56.31
46.15
                              55.37
45.32
1970
                    56.12
                                        54.56
                                                  53,62
                                                            41.95
                                        43.83
                                                  42.78
                                                            38.79
                              37.64
56.49
                    37.98
57.37
1972
          38.1
                                        37.02
                                                  36.43
                                                            31.83
1973
          57.57
                                        54.77
                                                  53.75
                                                            42.83
1974
          39.2
                    39.1
                              38.69
                                        37.85
                                                  37.6
                                                            33.63
                              28.79
                                        28.56
                                                  28.27
                                                            25.67
1975
          29.16
                    29.05
                                                  45.54
47.86
1976
          48
                    47.81
                              47.07
                                        45.96
                                                            35.15
          51.52
                                        49
1977
                    51.32
                              50.56
                                                            39.12
                              52.29
49.96
                                                  50.07
47.04
1978
          52.89
                    52.72
                                        51.25
                                                            42.59
1979
                    50.62
          50.81
                                                            40.45
                                        48.28
          43.4
42.92
                    43.29
42.82
                              42.6
42.54
                                                  40.21
40.53
1980
                                        41.25
                                                            35.34
                                        41.47
                                                            34.61
1981
                              53.3
73.78
                                        51.45
72.77
                                                            39.52
54.68
1982
          54.22
                    54.05
                                                  50.09
          75.34
                                                  71.18
1983
                    75.02
1984
          50.8
                    50.67
                              50.13
                                        49.28
                                                  48.67
                                                            43.64
          49.68
                                        47.2
                    49.5
                              48.8
                                                  46.08
                                                            38.89
1985
                    71.63
107
                                                            51.78
79.83
1986
          71.91
                              70.55
                                        68.17
                                                  66.4
          108
                                                  100
                              106
                                        103
1987
          136
97.29
1988
                    135
                              133
                                        130
                                                  128
                                                            101
                                        94.06
                    97.04
                                                  93.3
                                                            84.83
1989
                              96.16
          68.02
                    67.85
                              67.15
                                                  65.11
                                                            59.29
Sorted results
                                                 90 Day
Prob. Peak 96
0.032258064516129
                   96 hr
                                                            Yearly
                              21 Day
                                        60 Day
                                        135
107
                              136
                                                  133
                                                            130
                                                                      128
                                                                                101
0.0645161290322581
0.0967741935483871
                              108
97.29
                                                                               84.83
79.83
                                                  106
                                                            103
                                                                      100
                                        97.04
75.02
71.63
                                                  96.16
                                                            94.06
                                                                      93.3
                              75.34
71.91
                                                  73.78
70.55
                                                            72.77
68.17
0.129032258064516
                                                                      71.18
                                                                                59.29
0.161290322580645
                                                                      66.4
                                                                                54.68
                              68.02
57.57
                                        67.85
57.37
                                                  67.15
56.49
                                                            65.76
54.77
                                                                      65.11
53.75
0.193548387096774
                                                                                51,78
0.225806451612903
                                                                                43.64
0.258064516129032
0.290322580645161
                                                  55.37
53.3
                              56.31
                                        56.12
                                                            54.56
                                                                      53.62
                                                                                42,83
                              54.22
                                        54.05
                                                            51.45
                                                                                42.59
                                                                      50.09
0.32258064516129
0.354838709677419
                                        52.72
51.32
                                                  52.29
50.56
                                                            51.25
49.28
                              52.89
                                                                      50.07
                                                                                41.95
                              51.52
                                                                      48.67
                                                                                40,45
0.387096774193548
0.419354838709677
                              50.81
                                        50.67
                                                  50.13
                                                            49
                                                                      47.86
                                                                                39.52
                                                            48.28
                                                  49,96
                                                                     47.16
                                                                                39,12
                              50.8
                                        50.62
0.451612903225806
0.483870967741936
                              49.81
                                        49.62
                                                  49.13
                                                            48.18
                                                                      47.04
                                                                                38.89
                                                  48.8
                              49.68
                                        49.5
                                                            47.2
                                                                      46.08
                                                                               38.79
0.516129032258065
                              48
                                        47.81
                                                  47.07
                                                            45.96
                                                                      45.54
                              46.15
                                                  45.32
43.54
42.6
0.548387096774194
                                                                     42.78
                                        45.99
                                                            43.83
                                                                               35.34
0.580645161290323
                              44.14
                                        43.98
                                                            42.64
                                                                      41.76
0.612903225806452
                              43.4
                                        43.29
                                                            41.47
                                                                      40.53
                                                                               34.61
0.645161290322581
                              42.92
                                        42.82
                                                  42.54
                                                            41.25
                                                                      40.21
                              39.2
38.1
                                                  38.69
37.64
0.67741935483871
                                        39.1
                                                            37.85
                                                                     37.6
                                                                                33.63
0.709677419354839
                                        37.98
                                                            37.02
                                                                      36.43
                                                  36.69
32.12
0.741935483870968
                              37.26
                                        37.17
                                                            35.86
                                                                     35.27
                                                                               31.83
0.774193548387097
                              32.63
                                        32.57
                                                                      30.36
                                                            31.11
                                                                                26.16
0.806451612903226
0.838709677419355
                              30.96
29.16
                                        30.86
29.05
                                                  30.66
28.79
                                                            30.02
                                                                     29.42
                                                                               25.67
                                                            28.56
                                                                                23.93
                                                                      28.27
0.870967741935484
0.903225806451613
                                       24.16
23.61
                                                 23.95
23.29
                                                            23.67
22.71
                              24.25
                                                                     23.27
                                                                               19.7
                                                                     22.27
                                                                                17.69
                              23.69
0.935483870967742
                                                            13.28
7.848
                                                                     13.04
7.652
                              13.8
                                        13.77
                                                  13.65
                                                                                10.34
                              8.186
                                       8.152
                                                  8.078
                                                                                5.099
0,967741935483871
         95.095 94.838 93.922 91.931 91.088 77.776
0.1
                                                  Average of yearly averages:
                                                                                         40.0889666666667
```

Inputs generated by pe5.pl - Novemeber 2006

Data used for this run: Output File: PRTFGRD Metfile: w11641.dvf
PRZM scenario: PRcoffeeSTD.txt
EXAMS environment file:

1963

1964

23.69

23.61

24,16

22.71

23.67

22.27

23.27

17.69

19.7

pond298.exv

Chemical Name: Myclobutanil Description Variable Name Units Value Comments Molecular weight g/mol mwt 288.8 Henry's Law Const. atm-m^3/mol

henry

```
Vapor Pressure vapr
                                 torr
Solubility
                         142
                sol
                                 mg/L
Kd
        кđ
                2.39
                         mg/L
Koc
        Koc
                         mg/L
                                         days
502
                                                 Half-life
Photolysis half-life
                                                          Halfife
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                 kbacw
                                                 days
                                 kbacs
                                                  days
                                                          Halfife
                                         251
                                                          Halfife
Aerobic Soil Metabolism
                                 asm
                                                 davs
                рН 7
2
Hydrolysis:
                                         Half-life
                                 days
Method: CAM
                         integer See PRZM manual
Incorporation Depth:
                                 0.28
                                         kg/ha
Application Rate:
                        TAPP
                                         0.99
Application Efficiency:
                                 APPEFF
                                                  fraction
Spray Drift DR
Application Date
                DRFT
                        0.01
                                 fraction of application rate applied to pond
                         Date
                                 1-2
                                         dd/mm or dd/mmm or dd-mm or dd-mmm
Interval 1
                interval
                                 14
                                         days
                                                 Set to 0 or delete line for single app.
                                 kg/ha
                apprate 0.28
app. rate 1
Interval 2
                interval
                                 14
                                         days
                                                 Set to 0 or delete line for single app.
app. rate 2
                apprate 0.28
                                 kg/ha
Interval 3
                interval
                                 14
                                         days
                                                 Set to 0 or delete line for single app.
app. rate 3
                apprate 0.28
                                 kg/ha
Interval 4
                interval
                                 \overline{14}
                                         days
                                                 Set to 0 or delete line for single app.
                apprate 0.28
                                 kg/ha
app. rate 4
Interval 5
                interval
                                 1\overline{4}
                                         days
                                                 Set to 0 or delete line for single app.
app. rate 5
                apprate 0.28
                                 kg/ha
Interval 6
                interval
                                 14
                                         days
                                                 Set to 0 or delete line for single app.
                                 kg/ha
app. rate 6
                apprate 0.28
Interval 7
                                         days
                                                 Set to 0 or delete line for single app.
                interval
                apprate 0.28
                                 kg/ha
app. rate 7
Record 17:
        IPSCND
        UPTKF
Record 18:
                PLVKRT
        PLDKRT
        FEXTRO
                0.5
Flag for Index Res. Run
                                 IR
                                         EPA Pond
Flag for runoff calc. RUNOFF none
                                         none, monthly or total (average of entire run)
```

FL Tropical Fruit air

stored as FLTFAIR.out

Chemical: Myclobutanil
PRZM environment: FLavocadoSTD.txt rocadoSTD.txt modified Tueday, 29 May 2007 at 12:44:32 ad298.exv modified Thuday, 29 August 2002 at 16:33:30 modified Wedday, 3 July 2002 at 09:04:28 EXAMS environment: pond298.exv Metfile: w12839.dvf modified

Water segment concentrations (ppb)

```
Year
         Peak
                   96 hr
                            21 Day 60 Day 90 Day Yearly
         5.978
                   5.957
                             5.849
                                      5.616
                                                5.455
                                                         3.537
1961
         8.962
12.11
                  8.929
12.06
                            8.794
11.88
                                      8.557
11.6
                                                         6.784
9.381
1962
                                                8.391
                                                11.41
1963
                            12.82
12.98
                                      12.5
12.68
1964
         13.07
                   13.02
                                                12.28
                                                         10.61
                                                12.5
                   13.13
                                                         10.99
1965
         13.18
                            15.6
16.36
                                      15.11
15.82
                                               14.74
15.47
1966
         15.86
                   15.81
                                                         12.42
                  16.57
17.47
                                                         13.58
1967
         16.62
                            17.23
15.89
1968
         17.53
                                      16.8
                                                16.52
                                                         14.35
                                      15.61
         16.16
                   16.1
                                                15.41
                                                         13.79
1969
                  16.93
15.77
1970
         16.99
                            16.67
                                      16.32
                                                15.95
                                                         13.78
                                      15.27
1971
         15.82
                            15.6
                                               15.05
                                                         13.42
                            15.65
14.79
14.38
         15.89
                   15.86
                                      15.29
                                                15.04
                                                         13.19
1973
         15.05
                   15
                                      14.5
                                                14.31
                                                         12.78
1974
         14.65
                                      14.03
                                                13.82
                                                         12.21
                            13.75
13.7
                                                         11.76
1975
         14
                   13.95
                                      13.46
                                               13.28
         13.94
                   13.89
                                                13.19
1976
                                      19.08
16.88
                  19.9
17.39
                            19.6
17.13
1977
         19.98
                                               18.78
                                                         14.95
         17.45
                                                16.68
                                                         15.01
1978
                                      30.18
23.77
1979
         30.96
                   30.83
                            30.5
                                               29.66
                                                         22.26
                             23.98
                                                23.6
                                                         21.52
1980
                   24.24
         24.32
1981
         20.43
                   20.35
                            20.08
                                      19.85
                                               19.66
                                                         17.89
                            19.24
         19.59
                   19.52
                                      19.01
                                                18.8
                                                         16.41
1982
                  17.42
17.12
                            17.21
16.93
1983
         17.48
                                      16.87
                                               16.66
                                                         14.97
                                                         14.44
                                      16.6
         17.18
                                                16.3
1984
                            15.98
15.67
1985
         16.27
                   16.22
                                      15.68
                                               15.48
                                                         13.86
                                                         13.38
                                      15.39
                                               15.18
                   15.9
1986
         15.96
```

```
15.22
14.33
                  15.17
14.28
                            14.95
14.07
                                     14.54
13.79
                                              14.31
13.6
                                                       12.62
12.06
1988
1989
         14.34
                  14.29
                            14.08
                                     13.78
                                              13.57
                                                       11.88
1990
Sorted results
                  96 hr
                                     60 Day
                                              90 Day
                            21 Day
Prob.
         Peak
                                                       Yearly
                            30.96
                                              30.5
23.98
                                                       30.18
0.032258064516129
                                     30.83
                                                                29.66
                                                                         22.26
0.0645161290322581
                                     24.24
                                                                 23.6
                                                                          21.52
                            20.43
19.98
19.59
0.0967741935483871
                                     20.35
                                              20.08
                                                       19.85
                                                                 19.66
                                                                          17.89
                                                                          16.41
0.129032258064516
                                     19.9
                                              19.6
                                                       19.08
                                                                 18.8
0.161290322580645
                                     19.52
                                              19.24
                                                       19.01
                                                                 18.78
                                                                          15.01
                            17.53
17.48
                                              17.23
                                                                          14.97
0.193548387096774
                                     17.47
                                                       16.88
                                                                16.68
0.225806451612903
                                     17.42
                                              17.21
                                                       16.87
                                                                          14.95
                            17.45
17.18
0.258064516129032
                                     17.39
                                              17.13
                                                       16.8
                                                                16.52
                                                                          14.44
0.290322580645161
                                     17.12
                                              16.93
                                                       16.6
                                                                 16.3
                                                       16.32
15.82
                                                                15.95
0.32258064516129
                            16.99
                                     16.93
                                              16.67
                                                                          13.86
0.354838709677419
                                              16.36
                                                                 15.48
                            16.62
                                     16.57
                                                                          13.79
                           16.27
16.16
                                              15.98
15.89
                                                       15.68
15.61
                                                                15.47
15.41
0.387096774193548
                                     16.22
                                                                          13.78
0.419354838709677
                                     16.1
                                                                          13.58
                            15.96
15.89
                                     15.9
15.86
                                              15.67
15.65
                                                       15.39
15.29
                                                                15.18
15.05
0.451612903225806
                                                                          13.42
0.483870967741936
                                                                          13.38
                                     15.81
15.77
                                              15.6
15.6
0.516129032258065
                            15.86
                                                       15.27
                                                                15.04
                                                                          13.19
0.548387096774194
                                                       15.11
                            15.82
                                                                 14.74
                                                                          12.83
                            15.22
15.07
                                     15.17
15.02
                                              14.95
14.79
                                                       14.62
14.54
0.580645161290323
                                                                 14.44
                                                                          12.78
                                                                          12.62
0.612903225806452
                                                                 14.31
                           15.05
14.65
                                                       14.5
14.03
0.645161290322581
                                     15
                                              14.78
                                                                 14.31
                                                                          12.42
                                                                         12.21
                                     14.6
                                              14.38
                                                                13.82
0.67741935483871
                                                       13.79
13.78
0.709677419354839
                            14.34
                                     14.29
                                              14.08
                                                                13.6
                                                                          12.06
                                                                13.57
0.741935483870968
                            14.33
                                     14.28
                                              14.07
                                                                          11.88
                            14
13.94
                                              13.75
13.7
                                                                          11.76
0.774193548387097
                                     13.95
                                                       13.46
                                                                 13.28
0.806451612903226
                                     13.89
                                                       13.4
                                                                13.19
                                                                          11.63
0.838709677419355
                            13.18
                                     13.13
                                              12.98
                                                       12.68
                                                                          10.99
                            13.07
12.11
8.962
0.870967741935484
                                     13.02
                                              12.82
                                                       12.5
                                                                12.28
                                                                          10.61
                                              11.88
8.794
0.903225806451613
                                     12.06
                                                       11.6
                                                                 11.41
                                                                          9.381
                                                       8.557
0.935483870967742
                                     8,929
                                                                 8.391
                                                                          6.784
                                     5.957
                                              5.849
                                                       5.616
                                                                5.455
0.967741935483871
                            5.978
0.1
         20.385 20.305 20.032 19.773
                                             19.574 17.742
                                              Average of yearly averages:
                                                                                 13.2764
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: FLTFAIR
Metfile: w12839.dvf
PRZM scenario: FLavocadoSTD.txt
EXAMS environment file:
Chemical Name: Myclobutanil
                                     pond298.exv
Description
                  Variable Name
                                     Value
                                              Units Comments
Molecular weight
                           mwt
                                     288.8
                                              q/mol
Henry's Law Const.
Vapor Pressure vapr
                                              atm-m^3/mol
                                     torr
Solubility
Kd Kd
                  sol
                           142
                                     mg/L
                  2.39
                           mg/L
mg/L
Kd
         Koc
Koc
Photolysis half-life
                                                       Half-life
                           kdp
                                              davs
Aerobic Aquatic Metabolism
                                              502
                                                                Halfife
                                     kbacw
                                                       days
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                     kbacs
                                                       days
                                                                Halfife
                                              251
                                     asm
                                                       days
                рН 7
2
                                              Half-life
Hydrolysis:
                                     days
Method: CAM
                            integer See PRZM manual
Incorporation Depth:
Application Rate:
                           DEPT
                                              CIM
                                     0.28
                                              kg/ha
                           TAPP
Application Race.
Application Efficiency:
Spray Drift DRFT 0.05
                                     APPEFF 0.95 fraction fraction of application rate applied to pond
                                     APPEFF
                                     1-3
14
                                              dd/mm or dd/mmm or dd-mm or dd-mmm days / Set to 0 or delete line for single app.
Application Date
                           Date
                  interval
Interval 1
                  apprate 0.28
            1
                                     kg/ha
app. rate
                                                       Set to 0 or delete line for single app.
Interval 2
                                     14
                                              days
                  interval
                                    kg/ha
14
                  apprate 0.28
            2
app. rate
```

days

days

days

kg/ha

kg/ha

14

14

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

1987

Interval 3

Interval 4

app. rate of Interval 5

app. rate

3

4

interval apprate 0.28

interval

interval

apprate 0.28

15.07

15.02

14.78

14.62

14.44

```
apprate 0.28
                                kg/ha
app. rate 5
Interval 6
                interval
                                1\overline{4}
                                        days
                                                Set to 0 or delete line for single app.
app. rate 6
                apprate 0.28
                                kg/ha
                                        days
                                                Set to 0 or delete line for single app.
Interval
                interval
                                kg/ha
app. rate 7
                apprate 0.28
       IPSCND
        UPTKF
Record 18:
                PLVKRT
        PLDKRT
        PEXTRC
               0.5
Flag for Index Res. Run
                                IR
                                        EPA Pond
Flag for runoff calc. RUNOFF none
                                       none, monthly or total (average of entire run)
```

5.069

5.052

5.003

4.938

4.897

```
FL Tropical Fruit ground
stored as FLTFGRD.out
Chemical: Myclobutanil
                             rocadoSTD.txt modified Tueday, 29 May 2007 at 12:44:32 ad298.exv modified Thuday, 29 August 2002 at 16:33:30 modified Wedday, 3 July 2002 at 09:04:28
PRZM environment: FLavocadoSTD.txt
EXAMS environment: pond298.exv
Metfile: w12839.dvf modified
Water segment concentrations (ppb)
Year
          Peak
                   96 hr
                              21 Day 60 Day 90 Day Yearly
                   2.003
                                       1.883
                                                 1.825
                                                           1.096
1961
          2.013
                              1.966
          2.605
4.047
                   2.595
4.031
                                       2.465
3.935
1962
                             2.556
                                                 2.401
                                                           1 972
                              3.979
                                                 3.874
1963
                                                           3.009
                             3.914
3.516
                                                 3.738
3.391
1964
          3.987
                   3.973
                                       3.801
                                                           3.279
                    3.564
                                                           3.069
1965
          3.576
                                       3.436
1966
1967
                   5.73
6.274
          5.752
                              5.637
                                       5,442
                                                 5.301
                                                           3 992
          6.298
                                       5.973
                              6.187
                                                 5.822
                                                           4.876
                                       6.551
5.265
1968
          6.895
                    6.872
                              6.772
                                                 6.425
                                                           5.464
                              5.296
1969
          5.36
                   5.342
                                                 5.235
                                                           4.821
1970
          6.268
                    6.243
                              6.189
                                       6.03
                                                 5.879
                                                           4.829
1971
                   5.198
                                       5.001
          5.212
                              5.128
                                                 4.935
                                                           4.521
1972
          5.345
                    5.328
                                       5.085
                                                 4.989
                                                           4.327
1973
          4.361
                   4.347
                             4.291
                                       4.248
                                                 4.212
                                                           3.863
                                                 3.769
1974
          4.036
                    4.021
                              3.963
                                       3.848
                                                           3.386
1975
          3.477
                   3.465
                              3.419
                                       3.368
                                                 3.33
                                                           3.012
1976
          3.338
                    3.326
                              3.28
                                       3.208
                                                           2.806
          9.462
6.791
                   9.419
6.77
                             9.329
6.732
1977
                                       8.981
                                                 8.829
                                                           6.15
                                       6.717
20.77
14.43
                                                           6.171
1978
                                                 6.699
          21.96
14.79
                   21.87
14.77
1979
                             21.5
                                                 20.22
                                                           13.77
                             14.66
                                                 14.32
1980
                                                           13
                   10.55
9.35
                             10.5
9.271
                                       10.35
9.172
1981
          10.56
                                                 10.29
                                                           9.219
1982
          9.381
                                                 9.015
                                                           7.784
          6.974
6.706
                                                 6.739
6.296
1983
                    6.951
                              6.858
                                       6.764
                                                           6 259
                   6.682
1984
                              6.587
                                       6.399
                                                           5.575
                                                 5.273
4.897
1985
          5.479
                   5.46
                              5.413
                                       5.325
                                                           4.871
                   5.052
1986
          5.069
                             5.003
                                       4.938
                                                           4.349
          4.738
4.568
                             4.642
4.496
3.736
1987
                   4.72
                                       4.475
                                                 4.357
                                                           3.938
1988
                   4.551
                                       4.346
                                                 4.237
                                                           3.778
1989
          3.8
                   3.787
                                       3.693
                                                 3.656
                                                           3.322
          3.871
1990
                   3.856
                             3.805
                                       3.742
                                                 3.669
                                                           3.205
Sorted results
Prob. Peak 96 0.032258064516129
                                                          Yearly
20.77
                   96 hr
                             21 Day
                                       60 Day
                                                 90 Day
                             21.96
14.79
                                                21.5
14.66
                                       21.87
14.77
                                                                    20.22
                                                                             13.77
                                                                             13
9.219
7.784
0.0645161290322581
                                                           14.43
                                                                    14.32
                                       10.55
9.419
                             10.56
9.462
                                                10.5
9.329
                                                          10.35
9.172
0.0967741935483871
                                                                    10.29
0.129032258064516
                                                                    9.015
                             9.381
6.974
                                       9.35
6.951
                                                          8.981
6.764
                                                                    8.829
6.739
0.161290322580645
                                                 9.271
                                                                              6.259
0.193548387096774
                                                 6.858
                                                                              6.171
0.225806451612903
0.258064516129032
                                                6.772
6.732
                             6.895
                                       6.872
                                                           6.717
                                                                    6.699
                                                                              6.15
                                                           6.551
                                                                              5.575
                                       6.77
                             6.791
                                                                    6.425
                                                                              5.464
0.290322580645161
                             6.706
                                       6.682
                                                 6.587
                                                           6.399
                                                                    6.296
0.32258064516129
                             6.298
                                                 6.189
                                                          6.03
                                       6.274
                                                                    5.879
                                                                              4.876
0.354838709677419
0.387096774193548
                             6.268
5.752
                                       6.243
5.73
                                                 6.187
                                                           5.973
                                                                    5.822
                                                                              4.871
                                                           5.442
                                                 5.637
                                                                    5.301
                                                                              4.829
0.419354838709677
                             5.479
                                       5.46
                                                 5.413
                                                           5.325
                                                                              4.821
                                       5.342
0.451612903225806
                             5.36
                                                 5.296
                                                          5.265
                                                                    5,235
                                                                              4.521
0.483870967741936
                             5.345
                                       5.328
                                                 5.256
                                                           5.085
                                                                    4.989
                                                                              4.349
0.516129032258065
                             5.212
                                       5.198
                                                 5.128
                                                           5,001
                                                                    4.935
                                                                              4.327
```

```
4.642
4.496
4.291
                           4.568
4.361
                                   4.551
4.347
                                                              4.237
4.212
0.645161290322581
                                                     4.248
                                                                       3.778
0.67741935483871
0.709677419354839
                                    4.031
4.021
                                                                      3.386
3.322
                           4.047
                                             3.979
                                                     3 935
                                                              3.874
                                             3.963
                           4.036
                                                              3.769
                                                     3.848
0.741935483870968
0.774193548387097
                           3.987
3.871
                                    3.973
                                             3.914
                                                     3.801
                                                              3.738
                                                                       3.279
                                    3.856
                                                              3.669
                                                                       3.205
                                             3.805
0.806451612903226
0.838709677419355
                           3.8
3.576
                                   3.787
3.564
                                            3.736
3.516
                                                     3.693
                                                              3.656
                                                                       3 069
                                                              3.391
                                                     3.436
                                                                       3.012
                                   3.465
3.326
0.870967741935484
                           3.477
                                             3.419
                                                     3.368
                                                              3.33
                                                                       3.009
                                                              3.149
0.903225806451613
                           3.338
                                            3.28
                                                     3.208
                                                                      2.806
0.935483870967742
                           2.605
                                    2.595
                                             2.556
                                                     2.465
                                                              2.401
                                                                       1.972
                                   2.003
0.967741935483871
                           2.013
                                            1.966
                                                     1.883
                                                              1.825
                                                                      1.096
         10.4502 10.4369 10.3829 10.2322 10.1625 9.0755
0.1
                                            Average of yearly averages:
                                                                               4.99043333333333
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: FLTFGRD
Metfile: w12839.dvf
PRZM scenario: FLavocadoSTD.txt
EXAMS environment file: po
                                  pond298.exv
Chemical Name: Myclobutanil
Description
                  Variable Name Value
                                            Units
                                                    Comments
Molecular weight
Henry's Law Const.
                                            g/mol
                          mw+
                                   288.8
                          henry
                                            atm-m^3/mol
                                   torr
Vapor Pressure vapr
Solubility sol
Kd Kd 2.39
                          142
                                   mg/L
                 2.39
                          mg/L
Koc
         Koc
                          mg/L
Photolysis half-life kdp
Aerobic Aquatic Metabolism
                                            days
502
                                                     Half-life
                                                             Halfife
                                   kbacw
                                                     days
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                   kbacs
                                                              Halfife
                                                     days
                                            251
                                                     days
                                                             Halfife
                                   asm
                рН 7
2
Hydrolysis:
                                   days
                                            Half-life
Method: CAM
                          integer See PRZM manual
Incorporation Depth:
Application Rate:
                        DEPI
                                            cm
                          TAPP
                                   0.28
                                            kg/ha
Application Efficiency:
                                   APPEFF 0.99 fraction
fraction of application rate applied to pond
                 DRFT 0.01
Spray Drift
Application Date
                          Date
                                   1-3
                                            dd/mm or dd/mmm or dd-mm or dd-m
Interval 1
                 interval
                                   14
                                            days
                                                     Set to 0 or delete line for single app.
                  apprate 0.28
                                   kg/ha
Interval 2
                  interval
                                   14
                                            davs
                                                     Set to 0 or delete line for single app.
                  apprate 0.28
app. rate 2
                                   kg/ha
Interval 3
                                                   Set to 0 or delete line for single app.
                  interval
                                   14
                                            days
app. rate 3
                  apprate 0.28
                                   kg/ha
Interval 4
                  interval
                                   14
                                            days
                                                   Set to 0 or delete line for single app.
                  apprate 0.28
                                   kg/ha
app. rate 4
Interval 5
                                                    Set to 0 or delete line for single app.
                  interval
                                   14
                                            days
                  apprate 0.28
                                   kg/ha
app. rate 5
Interval 6
                  interval
                                   14
                                            davs
                                                    Set to 0 or delete line for single app.
app. rate 6
Interval 7
                  apprate 0.28
                                   kg/ha
                  interval
                                            days
                                                     Set to 0 or delete line for single app.
                  apprate 0.28
                                   kg/ha
app. rate 7
Record 17:
                  FTITEA
         IPSCND
        UPTKF
                 PLVKRT
Record 18:
        PLDKRT
        FEXTRC
Flag for Index Res. Run
                                   IR
                                            EPA Pond
Flag for runoff calc. RUNOFF none
                                            none, monthly or total (average of entire run)
LA Tropical Fruit air
```

4.738

4.357

3.863

4.346

0.580645161290323

0.612903225806452

stored as LATFAIR out Chemical: Myclobutanil PRZM environment: LAsugarcaneSTD.txt modified Tueday, 29 May 2007 at 12:56:00 EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w13970.dvf modified Wedday, 3 July 2002 at 09:05:36 Water segment concentrations (ppb)

```
40.43
97.65
79.45
102
                                                      38.27
91.51
1961
                      40.31
                                 39.8
                                            38.81
                                                                 26.39
                                 96.53
78.7
                                           93.91
77.36
98.7
                      97.4
                                                                 68.63
1962
                                                      76.07
97.43
99.42
1963
                      79.19
                                                                 72.98
1964
                      102
                                 101
                                                                 86.44
1965
           103
                      102
                                 101
                                            101
                                                                 91.83
1966
1967
           114
                      114
                                 112
                                            110
                                                      110
                                                                 98.29
                      183
                                 181
                                                                 145
                                            180
1968
           150
                      150
                                 149
                                            148
                                                      148
                                                                 139
1969
                      164
                                 162
                                            158
                                                                 142
           164
                      163
147
1970
           163
                                162
                                            161
                                                      159
                                                                 145
1971
                                 146
                                            144
           148
                                                      144
                                                                 134
           169
177
                      169
177
                                167
175
                                           164
173
                                                      162
171
1972
                                                                 139
1973
                                                                 150
                      152
167
                                           151
164
1974
           153
                                 151
                                                      150
                                                                 139
1975
                                 166
                                                                 144
           168
                                                      163
1976
1977
                                166
167
                                           164
163
                                                      162
161
                                                                 145
146
           168
                      167
           169
                      168
1978
1979
                      159
176
                                           156
173
                                                                 141
153
           159
                                 158
                                                      155
           177
                                 174
                                                      171
                      220
190
                                217
188
                                                                 182
172
1980
           221
                                           210
                                                      209
1981
           191
                                            185
                                                      184
1982
                      162
                                 160
                                            159
                                                      158
                                                                 148
1983
                                181
                                           178
                                                      175
           183
                      182
                                                                 155
1984
           155
                      155
                                154
                                            152
                                                      151
                                                                 142
                                137
1985
           139
                      138
                                            134
                                                      133
                                                                 125
                                            143
                                                      140
                                                                 123
1986
           147
                      147
                                 146
                                                                 123
119
1987
           138
                     138
                                137
                                           136
                                                      135
                                132
157
           134
                      134
                                           130
                                                      129
1988
1989
           158
                      157
                                           154
                                                      151
                                                                 130
1990
           143
                      143
                                 142
                                           141
                                                      139
                                                                 130
Sorted results
Prob. Peak 96 0.032258064516129
                                21 Day
                                           60 Day
220
                                                      90 Day
217
                     96 hr
                                                                 Yearly
                                221
                                                                 210
                                                                           209
                                                                                      182
0.0645161290322581
0.0967741935483871
                                191
184
                                                                 185
180
                                                                           184
179
                                                                                      172
155
                                           190
                                                      188
                                           183
                                                      181
0.129032258064516
0.161290322580645
                                           182
177
                                                      181
175
                                                                 178
173
                                                                           175
171
                                                                                      153
150
                                183
                                177
0.193548387096774
0.225806451612903
                                           176
169
                                                                 173
164
                                177
                                                      174
                                                                           171
                                                                                      148
                                169
                                                                            163
                                                      167
                                                                                      146
0.258064516129032
0.290322580645161
                                                                           162
162
                                                                                      145
145
                                169
                                           168
                                                      167
                                                                 164
                                168
                                           167
                                                      166
                                                                 164
0.32258064516129
0.354838709677419
                                168
                                           167
                                                      166
                                                                 163
                                                                           161
                                                                                      145
                                164
                                           164
                                                      162
                                                                 161
                                                                           159
                                                                                      144
0.387096774193548
0.419354838709677
                                163
                                           163
                                                      162
                                                                 159
                                                                            158
                                                                                      142
                                162
                                           162
                                                      160
                                                                 158
                                                                           155
                                                                                      142
0.451612903225806
                                159
                                           159
                                                      158
                                                                 156
                                                                           155
                                                                                      141
0.483870967741936
                                158
                                           157
                                                      157
                                                                 154
                                                                           151
                                                                                      139
0.516129032258065
                                155
                                           155
                                                                 152
                                                                           151
0.548387096774194
                                153
                                           152
                                                      151
                                                                 151
                                                                           150
                                                                                      139
0.580645161290323
                                150
                                           150
                                                      149
                                                                 148
                                                                            148
                                148
147
0.612903225806452
                                           147
                                                      146
                                                                 144
                                                                           144
                                                                                      130
0.645161290322581
                                           147
                                                      146
                                                                 143
                                                                           140
                                                                                      130
0.67741935483871
0.709677419354839
                                143
139
                                                      142
137
                                           143
                                                                 141
                                                                           139
                                                                                      125
                                           138
                                                                 136
                                                                           135
                                                                                      123
0.741935483870968
0.774193548387097
                                           138
134
                                                                 134
130
                                138
                                                      137
                                                                           133
                                                                                      123
                                134
                                                      132
                                                                           129
                                                                                      119
0.806451612903226
0.838709677419355
                                114
103
                                           114
102
                                                      112
101
                                                                 110
                                                                           110
                                                                                      98.29
                                                                           99.42
97.43
                                                                                      91.83
                                                                 101
0.870967741935484
0.903225806451613
                                102
                                           102
                                                      101
                                                                 98.7
                                                                                      86.44
                                97.65
79.45
                                           97.4
79.19
                                                      96.53
78.7
                                                                93.91
77.36
                                                                           91.51
76.07
                                                                                      72.98
0.935483870967742
                                                                                      68.63
0.967741935483871
                                40.43
                                           40.31
                                                      39.8
                                                                 38.81
                                                                           38.27
                                                                                      26.39
                                                     178.6
                                                                154.8
0.1
          183.9 182.9
                                181
                                           179.8
                                                      Average of yearly averages:
```

90 Day

Yearly

60 Day

Inputs generated by pe5.pl - Novemeber 2006

Data used for this run: Output File: LATFAIR

Year

Peak

96 hr

21 Day

Metfile: w13970.dvf
PRZM scenario: LAsugarcaneSTD.txt
EXAMS environment file: pond pond298.exv

```
Chemical Name: Myclobutanil
Description
                  Variable Name
                                    Value
                                            Units
Molecular weight
                           mwt
                                    288.8
                                            g/mol
Henry's Law Const.
Vapor Pressure vapr
                                            atm-m^3/mol
                           henry
                                    torr
Solubility
                                    mg/L
                  sol
       кď
Kd
                  2.39
                           mg/L
Koc
         Koc
                           mg/L
Photolysis half-life kdp
Aerobic Aquatic Metabolism
                                            days
502
                                                     Half-life
                                                              Halfife
                                    kbacw
                                                     days
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                   kbacs
                                                     days
                                                              Halfife
                                                     days
                                                              Halfife
                                    asm
                рH 7
2
Hydrolysis:
                                    days
                                            Half-life
Method: CAM
                           integer See PRZM manual
                                            cm
Incorporation Depth:
                           DEPI
                           TAPP
                                    0.28
                                            kg/ha
Application Rate:
                                   APPEFF
                                   APPEFF 0.95 fraction fraction of application rate applied to pond
Application Efficiency:
                           0.05
Spray Drift
                 DRFT
                                   1-3
14
                                                   or dd/mmm or dd-mmm
Set to 0 or delete line for single app.
Application Date
                           Date
                                            dd/mm
                  interval
                                            days
Interval 1
app. rate 1
Interval 2
                                   kg/ha
                  apprate 0.28
                                                     Set to 0 or delete line for single app.
                  interval
                                    14
                                            days
                                   kg/ha
14
app. rate
           2
                  apprate 0.28
                                                     Set to 0 or delete line for single app.
Interval 3
                                            days
                  interval
                                   kg/ha
app. rate
           3
                  apprate 0.28
Interval 4
                                                     Set to 0 or delete line for single app.
                  interval
                                            davs
app. rate Interval 5
            4
                  apprate 0.28
                                   kg/ha
                                                    Set to 0 or delete line for single app.
                                    14
                                            days
                  interval
                                   kg/ha
app. rate 5
                  apprate 0.28
Interval 6
                                                    Set to 0 or delete line for single app.
                  interval
                                   14
                                            days
app. rate
Interval 7
                  apprate 0.28
            6
                                    kg/ha
                                                     Set to 0 or delete line for single app.
                  interval
                                   14
                                            davs
app. rate 7
                  apprate 0.28
                                   kg/ha
Record 17:
                 FILTRA
         IPSCND
         UPTKF
                 PLVKRT
Record 18:
         PLDKRT
        FEXTRC
Flag for Index Res. Run IR Flag for runoff calc. RUNOFF none
                                            EPA Pond
                                            none, monthly or total (average of entire run)
```

LA Tropical Fruit ground

stored as LATFGRD.out Chemical: Myclobutanil

PRZM environment: LAsugarcaneSTD.txt modified Tueday, 29 May 2007 at 12:56:00 EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w13970.dvf modified Wedday, 3 July 2002 at 09:05:36

Water segment concentrations (ppb)

Year 1961 1962 1963 1964 1965 1966 1967 1968 1970 1971 1972 1973 1974 1975 1977 1978	Peak 38.08 94.55 74.15 96.62 95.57 107 179 144 158 157 140 163 172 146 161 162 153 170	96 hr 37.96 94.31 73.99 96.29 96.32 107 179 144 158 157 140 163 171 145 160 161 162 152	21 Day 37.49 93.51 73.75 95.22 94.19 105 176 143 156 155 138 161 169 144 159 160 160	60 Day 36.47 91.01 73.18 93.15 93.66 102 175 142 152 154 137 157 167 144 157 157	90 Day 35.96 88.69 72.66 92.56 102 174 142 149 155 165 143 156 154 148	24.79 66.03 68.67 81.32 85.88 91.79 140 134 137 139 127 133 145 133 145 133 147
1979	170	170	168	166	165	147
1980 1981	216 185	215 184	212 182	205 179	20 4 178	177 167

```
1982
                                                             142
1983
1984
          176
148
                    176
148
                              175
146
                                        171
145
                                                   169
143
                                                             149
136
                                         126
136
1985
          131
                    130
                              129
                                                   124
                                                             118
                               139
                                                   133
          140
                                                             116
1986
                     139
          130
126
                              129
124
                                         128
122
                                                   127
121
1987
                    130
                                                             116
                                                             111
1988
                     125
1989
          151
                    150
                              150
                                         147
                                                   144
                                                             124
          136
                               135
                                         133
                                                   132
                                                             123
1990
                    135
Sorted results
                              21 Day
                                                   90 Day
Prob. Peak 96
0.032258064516129
                                         60 Day
                                                             Yearly
                   96 hr
                                        215
                                                   212
                              216
                                                             205
                                                                       204
0.0645161290322581
0.0967741935483871
                              185
179
                                        184
179
                                                             179
175
                                                                       178
174
                                                                                 167
149
                                                   182
                                                   176
                                         176
171
                                                             171
167
                                                                                 147
145
0.129032258064516
                               176
                                                   175
                                                                       169
0.161290322580645
                                                   169
                              172
                                                                       165
0.193548387096774
                              170
                                         170
                                                   168
                                                             166
                                                                       165
                                                                                 142
0.225806451612903
                              163
                                        163
                                                   161
                                                             157
                                                                       156
                                                                                 140
0.258064516129032
                                         162
                                                   160
                              162
                                                                                 140
0.290322580645161
                              161
                                        161
                                                   160
                                                             157
                                                                       155
                                                                                 139
0.32258064516129
                              161
                                        160
                                                             156
                                                                       154
                                                                                 139
0.354838709677419
0.387096774193548
                              158
                                        158
                                                   156
                                                             154
                                                                       152
                                                                                 137
                              157
                                                             152
                                                                       151
                                                   155
                                                                                 137
0.419354838709677
0.451612903225806
                              155
                                        155
                                                   153
                                                             152
                                                                       149
                                                                                 136
                              153
                                        152
                                                   151
                                                                       148
                                                             148
                                                                                 135
0.483870967741936
0.516129032258065
                              151
                                        150
                                                   150
                                                             147
                                                                       144
                                                                                 134
                                                             145
                                                                       143
                              148
                                        148
                                                   146
                                                                                 133
0.548387096774194
0.580645161290323
                              146
144
                                        145
144
                                                   144
                                                             144
                                                                       143
                                                                                 133
                                                   143
                                                             142
                                                                       142
                                                                                 127
0.612903225806452
0.645161290322581
                                        140
139
                              140
                                                   139
                                                             137
                                                                       136
                                                                                 124
                                                             136
                              140
                                                   138
                                                                       133
                                                                                 123
0.67741935483871
0.709677419354839
                                                             133
128
                                                                       132
127
                              136
                                        135
                                                   135
                                                                                 118
                              131
                                        130
                                                   129
                                                                                 116
0.741935483870968
0.774193548387097
                              130
126
                                                   129
124
                                         130
                                                             126
                                                                       124
                                                                                 116
                                        125
                                                             122
                                                                       121
                                                                                 111
                                        107
96.29
95.32
0.806451612903226
                              107
                                                   105
                                                             102
                                                                       102
                                                                      92.56
91.5
                              96.62
95.57
                                                   95.22
94.19
0.838709677419355
                                                             93.66
                                                                                 85.88
0.870967741935484
0.903225806451613
                                                             93.15
                              94.55
                                                                       88.69
                                        94.31
                                                   93.51
                                                             91.01
                                                                                 68,67
0.935483870967742
                                         73.99
                                                   73.75
                                                                       72.66
0.967741935483871
                              38.08
                                        37.96
                                                   37.49
                                                             36.47
                                                                       35.96
                                                                                 24.79
                                                   173.5
         178.7 178.7
                              175.9
                                                            148.8
0.1
                                        174.6
                                                                                           122.782666666667
                                                   Average of yearly averages:
Inputs generated by pe5.pl - November 2006
Data used for this run:
                                        pond298.exv
```

```
Output File: LATFGRD
Metfile: w13970.dvf
PRZM scenario: LAsugarcaneSTD.txt
EXAMS environment file: pone
Chemical Name: Myclobutanil
                                        Value
                                                  Units
Description
                   Variable Name
                                                            Comments
Molecular weight
                                        288.8
                                                  g/mol
Henry's Law Const.

Vapor Pressure vapr
Solubility sol
Kd Kd 2.39

Koc Koc
                              henry
                                                   atm-m^3/mol
                              142
                                        mg/L
                              mg/L
Koc Koc
Photolysis half-life
                              mg/L
                              kdp
                                                   days
                                                            Half-life
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                                                      Halfife
                                        kbacw
                                                  502
                                                            days
                                        kbacs
                                                            days
                                                                      Halfife
Aerobic Soil Metabolism
Hydrolysis: pH 7
                                                  251
                   pH 7
                                        asm
                                                            days
                                                                      Halfife
                                        days
                                                  Half-life
Method: CAM
                              integer See PRZM manual
Incorporation Depth:
                              DEPI
                                                  CM
Application Efficiency:
                                                  kg/ha
0.99
                              TAPP
                                        0.28
                                                            fraction
                                        APPEFF
Spray Drift DR
Application Date
                                        fraction of application rate applied to pond
1-3 dd/mm or dd/mmm or dd-mmm
                              0.01
                    \mathtt{DRFT}
                              Date
                    interval
                                        14
                                                            Set to 0 or delete line for single app.
Interval 1
                                                  days
app. rate 1
Interval 2
                                        kg/ha
                    apprate 0.28
                    interval
                                        14
                                                            Set to 0 or delete line for single app.
                                        kg/ha
                    apprate 0.28
app. rate 2
```

```
Interval 3
                                                       Set to 0 or delete line for single app.
                  interval
                                              days
                                    kg/ha
14
app. rate 3
Interval 4
                  apprate 0.28 interval
                                              days
                                                       Set to 0 or delete line for single app.
                                     kg/ha
14
app. rate 4
Interval 5
                   apprate 0.28
                                                       Set to 0 or delete line for single app.
                                              days
                  interval
app. rate 5
Interval 6
                  apprate 0.28 interval
                                     kg/ha
14
                                                       Set to 0 or delete line for single app.
                                              days
app. rate 6
Interval 7
                                     kg/ha
                  apprate 0.28
                                                      Set to 0 or delete line for single app.
                                     14
                                              davs
                  interval
                                    kg/ha
app. rate 7
Record 17:
                  apprate 0.28
                  FILTRA
         IPSCND
         UPTKF
Record 18:
PLDKRT
                  PLVKRT
         FEXTRC 0.5
Flag for Index Res. Run IR Flag for runoff calc. RUNOFF none
                                              EPA Pond
                                             none, monthly or total (average of entire run)
```

CA Tropical Fruit air

stored as CATFAIR.out
Chemical: Myclobutanil
PRZM environment: CAcitrus_WirrigSTD.txt modified Tueday, 29 May 2007 at 12:41:26
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23155.dvf modified Wedday, 3 July 2002 at 09:04:20

Water segment concentrations (ppb)

Year	Peak	96 hr	21 Day	60 Day	90 Day	Yearly	
1961	5.238	5.222	5.158	5.023	4.906	3.871	
1962	12.79	12.76	12.62	12.37	12.2	10.19	
1963	19.25	19.22	19.07	18.77	18.51	15.91	
1964	19.2	19.17	19.03	18.76	18.57	16.57	
1965	19.87	19.84	19.68	19.39	19.18	17.07	
1966	20.39	20.34	20.16	19.86	19.66	17.53	
1967	20.72	20.69	20.58	20.27	20.05	17.79	
1968	20	19.96	19.79	19.49	19.27	17.1	
1969	19.9	19.86	19.71	19.39	19.16	16.88	
1970	19.34	19.3	19.16	18.87	18.66	16.59	
1971	20.21	20.18	20.02	19.75	19.59	17.51	
1972	19.69	19.62	19.43	19.14	19.11	17.53	
1973	21.11	21.07	20.89	20.58	20.34	17.95	
1974	21.8	21.76	21.58	21.27	21.06	18.43	
1975	21.07	21.04	20.93	20.63	20.41	18.12	
1976	20.28			19.81	19.59	17.39	
1977	20.51			20	19.73		
1978	28.49	28.43	28.2	27.91	27.68		
1979	24.9		24.66		24.11	21.42	
1980	22.48	22.44			21.84	19.6	
1981	21.8				21.01	18.58	
1982	20.98		20.77	20.4	20.11	17.8	
1983	21.21			20.76	20.55	18.43	
1984	20.66		20.49	20.2	19.99	17.82	
1985	19.98	19.94		19.49	19.29	17.28	
1986	19.81	19.77	19.63	19.35	19.14	17.12	
1987	20.34	20.29	20.11	19.81	19.6	17.65	
1988	20.36	20.32	20.22	19.97	19.77	17.63	
1989	20.16	20.12	19.94	19.65	19.46	17.39	
1990	19.74	19.69	19.52	19.25	19.05	16.99	
Sorted	results					•	
Prob.		96 hr	21 Day	60 Day	90 Day	Yearly	
	8064516		28.49		28.2		27
	6129032		24.9	24.85	24.66	24.34	24
	44.035.40			22.03		22.04	21

Prob.	Peak	96 hr	21 Day	60 Day	90 Day	Yearly		
0.03225	8064516	129	28.49	28.43	28.2	27.91	27.68	23.62
0.06451	6129032	2581	24.9	24.85	24.66	24.34	24.11	21.42
0.09677	4193548	3871	22.48	22.44	22.28	22.04	21.84	19.6
0.12903	32258064	516	21.8	21.76	21.58	21.27	21.06	18.58
0.16129	0322580	645	21.8	21.75	21.57	21.27	21.01	18.43
0.19354	18387096	774	21,21	21.18	21.05	20.76	20.55	18.43
0.22580	6451612	903	21.11	21.07	20.93	20.63	20.41	18.12
0.25806	4516129	032	21,07	21.04	20.89	20.58	20.34	17.95
0.29032	2580645	161	20.98	20.94	20.77	20.4	20.11	17.82
0.32258	306451612	29	20.72	20.69	20.58	20.27	20.05	17.8
0.35483	87096774	119	20.66	20.63	20.49	20.2	19.99	17.79
0.38709	6774193	548	20.51	20.47	20.27	20	19.77	17.65
0.41935	4838709	577	20.39	20.34	20.22	19.97	19.73	17.63

```
0.483870967741936
                           20.34
                                    20.29
                                            20.11
                                                     19.81
                                                              19.6
                                                                       17.53
                                            20.11 20.02
                                                     19.81
19.75
                                                                       17.51
17.45
17.39
0.516129032258065
                           20.28
                                    20.24
                                                              19.59
                                                              19.59
0.548387096774194
                           20.21
                                    20.18
0.580645161290323
                           20.16
                                            19.94
                                                     19.65
0.612903225806452
                           20
                                    19.96
                                            19.79
                                                     19.49
                                                              19.29
                                                                       17.39
                                            19.76
19.71
0.645161290322581
                           19.98
                                    19.94
                                                     19.49
                                                              19.27
                                                                       17.28
0.67741935483871
                           19.9
                                    19.86
                                                     19.39
                                                              19.18
                                                                       17.12
0.709677419354839
                           19.87
                                            19.68
                                                     19.39
                                    19.84
0.741935483870968
0.774193548387097
                           19.81
19.74
                                   19.77
19.69
                                            19.63
19.52
                                                     19.35
                                                              19.14
                                                                       17.07
                                                     19.25
                                                              19.11
                                            19.43
19.16
0.806451612903226
                           19.69
                                    19.62
                                                     19.14
                                                              19.05
                                                                       16.88
0.838709677419355
                                                     18.87
                                                              18.66
                                                                       16.59
                           19.34
                                    19.3
                           19.25
19.2
                                   19.22
19.17
                                            19.07
19.03
                                                     18.77
18.76
                                                                       16.57
15.91
0.870967741935484
                                                              18.57
                                                              18.51
0.903225806451613
                           12.79
5.238
0.935483870967742
                                    12.76
                                            12.62
                                                     12.37
                                                              12.2
                                                                       10.19
                                            5.158
                                    5.222
                                                     5.023
                                                              4.906
0.967741935483871
                                                                       3.871
        22.412 22.372 22.21
                                   21.963 21.762 19.498
0.1
                                            Average of yearly averages:
                                                                               17.1737
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: CATFAIR
Metfile: w23155.d
Metfile: w23155.dvf
PRZM scenario: CAcitrus_WirrigSTD.txt
EXAMS environment file:
                                   pond298.exv
Chemical Name: Myclobutanil
                 Variable Name
Description
                                   Value
                                            Units
                                                     Comments
                                            g/mol
Molecular weight
                          mwt.
                                   288.8
Henry's Law Const.
                          henry
                                            atm-m^3/mol
Vapor Pressure vapr
Solubility sol
                                   torr
                           142
                                   mg/L
       кď
кd
                  2.39
                           mg/L
Koc
        Koc
                           mg/L
                          kďp
                                            days
502
Photolysis half-life
                                                     Half-life
Aerobic Aquatic Metabolism
                                                              Halfife
                                   kbacw
                                                     days
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                                              Halfife
                                   kbacs
                                                     days
                                            251
                                                              Halfife
                                   asm
                                                     days
Hydrolysis:
                                            Half-life
                                    days
Method: CAM
                           integer See PRZM manual
Incorporation Depth:
                                   0.28
Application Rate:
                          TAPP
                                            kg/ha
                                                     fraction
Application Efficiency:
                                   APPEFF
                                            0.95
Spray Drift Di
Application Date
                                   fraction of application rate applied to pond 1-1 \, dd/mm or dd/mmm or dd-mmm or dd-mmm
                 DRFT
                          0.05
                                            dd/mm or dd/mmm or dd-mmm days Set to 0 or delete line for single app.
                           Date
                 interval
Interval 1
                                   14
                                            days
app. rate 1
                                   kg/ha
                 apprate 0.28
Interval 2
                  interval
                                   14
                                            days
                                                     Set to 0 or delete line for single app.
app. rate 2
                 apprate 0.28
                                   kg/ha
Interval 3
                 interval
                                   14
                                            days
                                                     Set to 0 or delete line for single app.
                 apprate 0.28
app. rate 3
                                   kg/ha
Interval 4
                  interval
                                   14
                                            days
                                                     Set to 0 or delete line for single app.
                  apprate 0.28
                                   kg/ha
app. rate 4
Interval 5
                 interval
                                   14
                                            days
                                                     Set to 0 or delete line for single app.
app, rate 5
                 apprate 0.28
                                   kg/ha
Interval 6
                  interval
                                            days
                                                     Set to 0 or delete line for single app.
                 apprate 0.28
                                   kg/ha
app. rate 6
Interval 7
                  interval
                                                     Set to 0 or delete line for single app.
                                            days
app. rate 7
                                   kg/ha
                 apprate 0.28
Record 17:
                 FILTRA
        IPSCND
         UPTKF
Record 18:
                 PLVKRT
        PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run
                                   IR
                                            EPA Pond
Flag for runoff calc. RUNOFF none
                                            none, monthly or total(average of entire run)
```

19.66

LA Tropical Fruit ground

stored as CATFGRD.out

0.451612903225806

20.36

20.32

20.16

Chemical: Myclobutanil
PRZM environment: CAcitrus_WirrigSTD.txt modified Tueday, 29 May 2007 at 12:41:26
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23155.dvf modified Wedday, 3 July 2002 at 09:04:20
Water segment concentrations (ppb)

```
96 hr
                              21 Day
                                                 90 Day
                                       60 Day
          Peak
                                       1.016
5.8
10.22
8.531
          1.058
5.906
                   1.055
5.892
                             1.043
5.842
                                                 0.9921 0.7842
5.761 4.616
1961
1962
          10.44
8.645
                    10.42
8.631
                             10.37
8.578
                                                           8.503
7.675
1963
                                                 10:06
                                                 8.482
7.994
7.672
1964
          8.218
7.835
                             8.145
7.767
                                                           7.124
1965
                    8.203
                                        8.062
                    7.818
                                                           6.87
1966
                                        7.714
1967
          7.613
                    7.603
                              7.563
                                       7.464
                                                 7.403
                                                           6.634
          6.74
                    6.727
                              6.675
                                        6.586
                                                 6.521
                                                           5.823
1968
                                       6.232
5.772
          6.39
                    6.378
                              6.329
                                                 6.171
                                                           5.447
          6.312
                                                 5.728
197.0
                    6.3
                              6.255
                                                           5.237
                                       6.716
6.772
7.284
1971
          6.83
                    6.818
                              6.769
                                                 6.697
                                                           6.115
          7.077
                    7.051
7.405
                                                 6.597
7.218
                              6.995
                                                           5.991
1972
                                                           6.391
          7.419
                              7.348
                              8.191
                                                 8.051
1974
          8,255
                    8.238
                                       8.147
                                                           6.968
1975
          7.558
                    7.547
                              7.527
                                                           6.642
1976
          6.676
                    6.665
                              6.634
                                        6.572
                                                 6.528
                                                           5.837
                                       6.751
15.48
11.59
                                                           5.939
                                                 6.66
          6.893
                    6.877
                              6.824
                                                 15.39
11.55
                   15.7
11.67
                             15.59
11.63
          15.75
11.69
1978
                                                           12.55
1979
                                                           8.29
7.19
1980
          9.263
                    9.247
                              9.196
                                        9.167
                                                 9.123
          8.298
                    8.282
                              8.231
                                        8.136
                                                 8.036
1981
          7.555
7.697
                    7.541
7.685
                             7.484
7.652
                                       7.36
7.592
6.761
                                                 7.229
7.543
1982
                                                           6.437
                                                           6.842
1983
1984
          6.869
                    6.859
                              6.822
                                                 6.715
                                                           6.043
                    5.978
                              5.929
                                        5.871
                                                 5.825
                                                           5.311
1985
          5.99
1986
                    5.639
6.006
                              5.6
5.953
                                       5.538
5.899
                                                 5.492
5.852
          5.648
                                                           4.948
                                                           5.374
1987
          6.019
                    6.118
5.869
1988
          6.129
                              6.071
                                        6.007
                                                 5.963
                                                           5.362
                                                 5.723
          5.878
                              5.823
                                        5.763
                                                           5.136
1989
1990
          5.335
                    5.325
                              5.281
                                        5.222
                                                 5.18
                                                           4.662
Sorted results
                   96 hr
                                       60 Day 90 Day
                             21 Day
                                                           Yearly
Prob.
          Peak
0.032258064516129
0.0645161290322581
                             15.75
11.69
                                       15.7
11.67
                                                 15.59
11.63
                                                           15.48
11.59
                                                                    15.39
11.55
                                                                              12.55
10.29
                             10.44
9.263
                                       10.42
9.247
                                                 10.37
9.196
                                                                              8.503
8.29
0.0967741935483871
                                                           10.22
                                                                     10.06
                                                           9.167
0.129032258064516
                                                                     9.123
                                                 8.578
8.231
                                                           8.531
8.147
                                                                              7.675
7.19
0.161290322580645
                              8.645
                                        8.631
                                                                     8.482
0.193548387096774
                              8.298
                                       8.282
                                                                     8.051
0.225806451612903
                              8.255
                                        8.238
                                                 8.191
                                                           8.136
                                                                     8.036
                                                                               7.124
                              8.218
                                       8.203
                                                                               6.968
0.258064516129032
                                                 8.145
                                                           8.062
                                                                     7.994
                                        7.818
                                                 7.767
7.652
0.290322580645161
                              7.835
                                                           7.714
                                                                     7.672
                                                                               6.87
                                                                              6.842
0.32258064516129
                              7.697
                                        7.685
                                                           7.592
                                                                     7.543
                                                 7.563
7.527
                                                           7.464
0.354838709677419
                              7.613
                                        7.603
                                                                     7.415
                                       7.547
7.541
                                                           7.462
0.387096774193548
                              7.558
                                                                     7.403
                                                                               6.634
                                                 7.484
7.348
0.419354838709677
                              7.555
                                                                     7.229
                                                                               6.437
                                       7.405
7.051
0.451612903225806
                              7.419
                                                           7.284
                                                                     7.218
                                                                               6.391
                                                           6.772
6.761
6.751
                              7.077
0.483870967741936
                                                 6.995
0.516129032258065
                              6.893
                                       6.877
                                                 6.824
                                                                     6,697
                                                                               6.043
                                                 6.822
6.769
0.548387096774194
                              6.869
                                       6.859
                                                                               5.991
                                                                     6.66
                                       6.818
6.727
0.580645161290323
                              6.83
                                                           6.716
                                                                     6.597
                                                                               5.939
0.612903225806452
                              6.74
                                                 6.675
                                                           6.586
                                                                     6.528
                                                                               5.837
                              6.676
6.39
                                       6.665
6.378
                                                 6.634
6.329
0.645161290322581
                                                           6.572
                                                                     6.521
                                                                               5.823
                                                           6.232
                                                                     6.171
0.67741935483871
                                                                               5.447
0.709677419354839
0.741935483870968
                              6.312
                                        6.3
                                                 6.255
                                                           6.007
                                                                     5.963
                                                                               5.374
                                        6.118
                                                 6.071
                                                           5.899
                                                                     5.852
                                                                               5.362
                              6.129
                                       6.006
5.978
                                                 5.953
5.929
                                                                     5.825
5.761
0.774193548387097
                              6.019
                                                           5.871
                                                                               5.311
                                                                               5.237
                                                           5.8
0.806451612903226
                              5.99
0.838709677419355
0.870967741935484
                                                           5.772
5.763
                              5.906
                                        5.892
                                                 5.842
                                                                     5.728
                                                                               5.136
                                                                     5.723
                                       5.869
                                                 5.823
                                                                               4.948
                              5.878
                                                 5.6
5.281
                                                           5.538
5.222
0.903225806451613
                              5.648
                                       5.639
                                                                     5.492
                                                                               4.662
0.935483870967742
                              5.335
                                       5,325
                                                                     5.18
                                                                               4.616
                              1.058
                                       1.055
                                                 1.043
                                                           1.016
                                                                     0.9921 0.7842
0.967741935483871
```

0.1 10.3223 10.3027 10.2526 10.1147 9.9663 8.4817

Average of yearly averages: 6.36770666666667

Inputs generated by pe5.pl - Novemeber 2006

```
Data used for this run:
Output File: CATFGRD
                w23155.dvf
Metfile:
PRZM scenario: CAcitrus_WirrigSTD.txt
                                  pond298.exv
EXAMS environment file:
Chemical Name: Myclobutanil
Description
                 Variable Name
                                  Value
                                           Units
                                                    Comments
Molecular weight
                                  288.8
                                           g/mol
Henry's Law Const.
Vapor Pressure vapr
                          henry
                                           atm-m^3/mol
                                   torr
Solubility
Kd Kd
                 sol
2.39
                          142
                                  mg/L
       Κđ
                          mg/L
Koc
        Koc
                          mg/L
Photolysis half-life
                                                    Half-life
                          kdp
                                           days
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                   kbacw
                                           502
                                                    days
                                                            Halfife
                                                    days
                                                             Halfife
                                  kbacs
Aerobic Soil Metabolism
                                   asm
                                           251
                                                    days
                                                             Halfife
                                           Half-life
                рН 7
2
Hvdrolvsis:
                                   davs
Method: CAM
                          integer See PRZM manual
Incorporation Depth:
                         DEPI
                                           cm
                                           kg/ha
Application Rate:
                          TAPP
                                   0.28
Application Efficiency:
                                  APPEFF 0.99
                                                    fraction
Spray Drift
                 \mathtt{DRFT}
                          0.01
                                   fraction of application rate applied to pond
                                           dd/mm or dd/mmm or dd-mm or dd-mmm days Set to 0 or delete line for single app.
Application Date
                          Date
                                   1-1
Interval 1
                 interval
                                   14
                                           days
                                  kg/ha
                 apprate 0.28
app. rate 1
Interval 2
                 interval
                                           days
                                                    Set to 0 or delete line for single app.
                                  kg/ha
app. rate 2
Interval 3
                 apprate 0.28 interval
                                                    Set to 0 or delete line for single app.
                                           days
app. rate 3
Interval 4
                                  kg/ha
                 apprate 0.28
                                                    Set to 0 or delete line for single app.
                                   14
                                           days
                 interval
                                  kg/ha
app. rate 4
Interval 5
                 apprate 0.28 interval
                                                    Set to 0 or delete line for single app.
                                           days
                 apprate 0.28
app. rate 5
                                  kg/ha
                                                    Set to 0 or delete line for single app.
Interval 6
                                           days
                 intervál
                                   14
                                  kg/ha
app. rate Interval 7
                 apprate 0.28
           6
                                                    Set to 0 or delete line for single app.
                                   14
                                           days
                 interval
     rate 7
                 apprate 0.28
                                  kg/ha
app.
Record 17:
                 FILTRA
        IPSCND
        UPTKF
Record 18:
                 PLVKRT
        PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run
                                           EPA Pond
                                  IR
Flag for runoff calc. RUNOFF
                                           none, monthly or total (average of entire run)
```

Appendix C. PRZM/EXAMS OUTPUTS for Myclobutanil plus 1,2,4-triazole.

CA artichokes aerial spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAgM = 630 days, Kd = 0.719 mg/L

```
stored as CAArtAir.out
Chemical: Myclobutanil total
PRZM environment: CARowCropRLF.txt modified Monday, 19 February 2007 at 22:04:10
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23234.dvf modified Tueday, 2 July 2002 at 19:04:22
Water segment concentrations (ppb)
```

```
Yearly
                              21 Day
                                        60 Day 90 Day
          Peak
                    96 hr
          2.702
                    2.697
5.329
9.361
                                                  2.61
1961
                              2.679
                                        2.639
                                                            1.89
                                                  5.166
9.159
         5.335
9.373
                              5.304
9.314
                                        5.25
9.219
                                                            4.325
7.932
1962
1963
                                        10.74
12.59
1964
          10.87
                    10.86
                              10,81
                                                  10.69
                                                            9.829
                                                  12.52
          12.76
                    12.75
                              12,7
                                                            11.55
1965
```

```
16.36
17.13
17.17
          16.38
17.15
                              17.06
17.09
                                       16.94
16.97
1968
                                                  16.86
                                                            15.8
                                                  16.89
                                                            15.94
1969
          17.19
1970
                    18.08
                              17.99
                                        17.88
                                                  17.8
                                                            16.63
                                                  17.78
1971
          18.07
                    18.05
                              17.97
                                        17.86
                                                            16.8
          17.92
                              17.82
                                                  17.63
                                                            16.69
                    18.11
                              18.03
                                        17.91
1973
          18.13
                                                  17.83
                                                            16.86
1974
                    19.41
                              19.33
                                        19.21
                                                  19.13
                                                            17.84
1975
          20.44
                    20.41
                              20.32
                                        20.21
                                                  20.12
                                                            18.81
                              20.22
19.76
                                        20.11
1976
                    20.31
                                                  20.02
                                                            18.92
                   19.85
20.41
1977
          19.87
                                       19.65
                                                  19.57
                                                            18.57
          20.43
19.58
                                                           18.77
18.47
1978
                              20.3
                                        20.18
                                                  20.03
                              19.47
1979
                    19.56
                                       19.36
                                                  19.28
1980
          20.22
                    20.2
                              20.11
                                        20
                                                  19.92
                                                            18.82
                   19.55
                                       19.35
1981
          19.57
                              19.46
                                                  19.25
                                                           18.36
                                                  20.97
          21.27
                                        21.05
1982
                              21.15
1983
          21.6
                    21.58
                              21.48
                                        21.33
                                                  21.22
                                                           19.97
          20.71
                    20.69
                              20.58
                                                  20.39
1984
                   20.02
19.32
                                                 19.73
19:03
1985
          20.04
                              19.93
                                       19.82
                                                           18.74
                                        19.12
          19.34
                              19.23
1986
                                                           18.11
                              18.75
19.92
1987
          18.87
                    18.84
                                       18.64
                                                  18.55
                                                           17.57
                                                  19.7
                                                           18.3
                    20.02
                                        19.82
          20.04
1988
                              19.28
19.72
1989
          19.39
                    19.37
                                       19.17
                                                  19.08
                                                           18.26
                                                 19.35
                                       19.48
                                                           18.36
          19.84
                    19.82
1990
Sorted results
                             21 Day
21.6
21.27
20.71
Prob. Peak 96
0.032258064516129
                                       60 Day
21.58
                                                 90 Day
                                                           Yearly
                   96 hr
                                                 21.48
                                                           21.33
                                                                     21.22
0.0645161290322581
0.0967741935483871
                                                           21.05
20.49
                                                                     20.97
20.39
                                       21.25
                                                  21.15
                                                                               19.52
                                        20.69
                                                  20.58
                                                                               19.33
                             20.44
                                       20.41
                                                 20.32
                                                           20.21
0.129032258064516
                                                                     20.12
                                                                               18.92
0.161290322580645
                                                                     20.03
                                                                               18.82
                             20.33
0.193548387096774
                                       20.31
                                                 20.22
                                                           20.11
                                                                     20.02
                                                                               18.81
0.225806451612903
                                                           20
                                                                     19.92
                                       20.2
                                                  20.11
                                                                               18.77
0.258064516129032
0.290322580645161
                             20.04
                                       20.02
                                                 19.93
19.92
                                                                     19.73
19.7
                                                                               18.74
18.57
                                                           19.82
                                                           19.82
0.32258064516129
0.354838709677419
                             19.87
19.84
                                                 19.76
19.72
                                                           19.65
19.48
                                       19.85
                                                                     19.57
                                                                               18.47
                                        19.82
                                                                     19.35
                                                                               18.36
0.387096774193548
0.419354838709677
                              19.58
19.57
                                       19.56
19.55
                                                           19.36
19.35
                                                  19.47
                                                                     19.28
                                                                               18.36
                                                 19.46
                                                                     19.25
                                                                               18.3
0.451612903225806
0.483870967741936
                              19.43
19.39
                                       19.41
                                                  19.33
                                                           19.21
                                                                     19.13
                                                                               18.26
                                                  19.28
                                                                     19.08
                                       19.37
                                                           19.17
                                                                               18.11
0.516129032258065
0.548387096774194
                             19.34
18.87
                                                 19.23
18.75
                                                                     19.03
18.55
                                                                               17.84
17.57
                                       19.32
                                                           19.12
                                       18.84
                                                           18.64
0.580645161290323
0.612903225806452
                             18.13
18.1
                                       18.11
18.08
                                                 18.03
17.99
                                                           17.91
17.88
                                                                     17.83
                                                                               16.86
                                                                     17.8
                                                                               16.8
0.645161290322581
0.67741935483871
                                                 17.97
17.82
                                                           17.86
17.71
                                                                     17.78
17.63
                              18.07
                                       18.05
                                                                               16.69
                             17.92
17.19
17.15
                                       17.9
                                                                               16.63
0.709677419354839
0.741935483870968
                                       17.17
                                                  17.09
                                                           16.97
                                                                     16.89
                                                                               15.94
                                       17.13
                                                 17.06
                                                           16.94
                                                                     16.86
                                                                               15.8
                                                           16.21
13.72
                                                                               14.92
0.774193548387097
                              16.38
                                       16.36
                                                 16.28
                                                                     16.15
                             13.91
12.76
10.87
9.373
                                                 13.83
0.806451612903226
                                       13,89
                                                                     13.65
                                                                               12.82
                                                 12.7
10.81
                                                           12.59
10.74
0.838709677419355
                                       12.75
                                                                     12.52
                                                                               11.55
0.870967741935484
                                       10.86
                                                                     10.69
                                                                               9.829
0.903225806451613
                                       9.361
                                                  9.314
                                                           9.219
                                                                     9.159
                                                                               7.932
                                                                               4.325
0.935483870967742
                              5.335
                                       5.329
                                                  5.304
                                                           5.25
                                                                     5.166
0.967741935483871
                              2.702
                                       2.697
                                                  2.679
                                                           2.639
                                                                     2.61
                                                                               1.89
         20.683 20.662 20.554 20.462 20.363 19.289
                                                 Average of yearly averages: 15.956866666667
```

Inputs generated by pe5.pl - Novemeber 2006

Data used for this run: Output File: CAArtAir Metfile: w23234.dvf
PRZM scenario: CARowCropRLF.txt

EXAMS environment file: pond298.exv Chemical Name: Myclobutanil total

Variable Name Value nt mwt 288.8 Description Units Comments Molecular weight mwt g/mol

13.83 16.28

13.89

1966

1967

13.72 16.21

13.65

16.15

12.82 14.92

Henry's Law Const. Vapor Pressure vapr henry atm-m^3/mol

torr 142 mg/L

Solubility Kd Kd sol 142 0.719 mg/L Kd

TEXT SEARCHABLE DOCUMENT

```
Koc
Photolysis half-life
                                                          Half-life
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
Aerobic Soil Metabolism
Hydrolysis: pH 7
                                                                   Halfife
                                      kbacw
                                                630
                                                          days
                                      kbacs
                                                          days
                                                                    Halfife
                                                315
                                       asm
                                                          days
                                                                   Halfife
                                       days
                                                Half-life
Method: CAM
                             integer See PRZM manual
Incorporation Depth:
                            DEPI
                                                cm
Application Rate: T. Application Efficiency:
                                                kg/ha
0.95
                             TAPP
                                      0.112
                                      APPEFF
                                                          fraction
                                      fraction of application rate applied to pond
1-3 dd/mm or dd/mmm or dd-mm or dd-mmm
14 days Set to 0 or delete line for si
kg/ha
Spray Drift DF
Application Date
                  DRFT 0.05
                             Date
Interval 1 app. rate 1 Interval 2
                   interval
                                                          Set to 0 or delete line for single app.
                   apprate 0.112
                   interval
                                       14
                                                days
                                                       Set to 0 or delete line for single app.
app. rate 2
                                      kg/ha
                   apprate 0.112
Interval 3
                   interval
                                      14
                                                       Set to 0 or delete line for single app.
                                      kg/ha
                   apprate 0.112
app. rate 3
Interval 4
                                                       Set to 0 or delete line for single app.
                                      kg/ha
                   apprate 0.112
app. rate 4
Interval 5
                   interval
                                                         Set to 0 or delete line for single app.
                   apprate 0.112
FILTRA
                                      kg/ha
app. rate 5
Record 17:
         TPSCND
         UPTKF
Record 18:
                   PLVKRT
         PLDKRT
FEXTRC 0.5 Flag for Index Res. Run
                                      IR
                                                EPA Pond
Flag for runoff calc. RUNOFF none
                                                none, monthly or total(average of entire run)
```

CA artichokes ground spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L $^{\circ}$

stored as CAArtGRD.out
Chemical: Myclobutanil total
PRZM environment: CARowCropRLF.txt modified Monday, 19 February 2007 at 22:04:10
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23234.dvf modified Tueday, 2 July 2002 at 19:04:22
Water segment concentrations (ppb)

Year	Peak	96 hr	21 Day	60 Day	90 Day	Yearly
1961	1.442	1.439	1.43	1.411	1.399	1.019
1962	3.283	3.278	3.261	3.226	3.145	2.456
1963	6.306	6.298	6.283	6.255	6.211	5.288
1964	7.07	7.063	7.046	7.029	7.02	6.494
1965	8.367	8.359	8.341	8.311	8.265	7.615
1966	8.986	8.976	8.953	8.931	8.879	8.372
1967	11.13	11.11	11.06	10.98	10.97	10.1
1968	11.54	11.53	11.51	11.47	11.4	10.65
1969	11.22	11.21	11.18	11.14	11.07	10.46
1970	11.96	11.95	11.92	11.87	11.8	10.95
1971	11.65	11.64	11.61	11.57	11.5	10.87
1972	11.28	11.27	11.25	11.22	11.16	10.56
1973	11.35	11.33	11.31	11.26	11.19	10.57
1974	12.59	12.57	12.54	12.49	12.41	11.46
1975	13.47	13.46	13.43	13.38	13.29	12.31
1976	13.23	13.22	13.19	13.14	13.06	12.31
1977	12.67	12.66	12.64	12.59	12.52	11.88
1978	13.24	13.22	13.18	13.05	12.94	12.07
1979	12.33	12.32	12.29	12.24	12.17	11.72
1980	12.99	12.98	12.95	12.91	12.83	12.08
1981	12.25	12.24	12.22	12.17	12.09	11.57
1982	14.02	14.01	13,.99	13.92	13.83	12.72
1983	14.25	14.23	14.2	14.1	14.03	13.18
1984	13.49	13.47	13.44	13,36	13.28	12.6
1985	12.77	12.76	12.73	12.67	12.59	11.98
1986	12.04	12.02	12	11.96	11.88	11.32
1987	11.54	11.53	11.5	11.44	11.36	10.76
1988	12.8	12.79	12.75	12.67	12.58	11.57
1989	12.16	12.15	12.12	12.05	11.97	11.52
1990	12.6	12.59	12.52	12.37	12.25	11.63

Sorted results


```
90 Day
                                                     Yearly
                           21 Day
                                   60 Day
0.032258064516129
                                                     14.1
13.92
                           14.25
                                   14.23
                                            14.2
                                                              14.03
                                                                      13.18
0.0645161290322581
                           14.02
                                    14.01
                                            13.99
                                                              13.83
                                                                      12.72
                           13.49
13.47
                                                     13.38
13.36
0.0967741935483871
                                    13.47
                                            13.44
                                                              13.29
                                                                      12.6
0.129032258064516
                                    13.46
                                            13.43
                                                              13.28
                                                                      12.31
                           13.24
13.23
                                   13.22
13.22
                                                     13.14
13.05
0.161290322580645
                                            13.19
                                                              13.06
                                                                      12.31
0.193548387096774
                                            13.18
                                                              12.94
                                                                      12.08
                                   12.98
12.79
                                                     12.91
12.67
0.225806451612903
                           12.99
                                            12.95
                                                              12.83
                                                                      12.07
0.258064516129032
                           12.8
                                            12.75
                                                              12.59
                                                                      11.98
                           12.77
12.67
                                   12.76
12.66
                                                     12.67
12.59
                                                             12.58
12.52
0.290322580645161
                                            12.73
                                                                      11.88
0.32258064516129
                                            12.64
                                                                      11.72
0.354838709677419
0.387096774193548
                           12.6
                                   12.59
                                            12.54
                                                     12.49
                                                              12.41
                                                                      11.63
                           12.59
                                   12.57
                                            12,52
                                                     12.37
                                                              12.25
                                                                      11.57
0.419354838709677
                           12.33
                                   12.32
                                            12.29
                                                     12.24
                                                              12.17
                                                                      11.57
0.451612903225806
                                   12.24
                                            12.22
                                                     12.17
                           12.25
                                                              12.09
                                                                      11.52
0.483870967741936
                           12.16
                                    12.15
                                            12.12
                                                     12.05
0.516129032258065
                           12.04
                                   12.02
                                            12
                                                     11.96
                                                             11.88
                                                                      11.32
0.548387096774194
                           11.96
                                   11.95
                                            11.92
                                                     11.87
                                                              11.8
                                                     11.57
11.47
0.580645161290323
                           11.65
                                   11.64
                                            11.61
                                                             11.5
                                                                      10.87
0.612903225806452
                                    11.53
                                            11.51
                           11.54
                                                              11.4
                                                                      10.76
                                                     11.44
11.26
0.645161290322581
                           11.54
                                   11.53
                                            11.5
                                                             11.36
                                                                      10.65
0.67741935483871
                                   11.33
                                            11.31
                                                              11.19
                                                                      10.57
                           11.35
                          11.28
11.22
                                            11.25
11.18
0 709677419354839
                                   11 27
                                                     11.22
                                                             11.16
                                                                      10 56
                                                     11.14
0.741935483870968
                                    11.21
                                                              11.07
                                                                      10.46
                                   11.11
8.976
0.774193548387097
                           11.13
                                            11.06
                                                     10.98
                                                             10.97
                                                                      10.1
0.806451612903226
                           8.986
                                            8.953
                                                     8.931
                                                              8.879
                                                                      8.372
                          8.367
7.07
                                   8.359
7.063
                                            8.341
7.046
0 838709677419355
                                                     8.311
                                                              8.265
                                                                      7 615
0.870967741935484
                                                     7.029
                                                              7.02
                                                                      6.494
                          6.306
3.283
                                                     6.255
3.226
                                                                      5.288
2.456
0.903225806451613
                                   6.298
                                            6.283
                                                             6.211
                                   3.278
                                            3.261
0.935483870967742
                                                             3.145
0.967741935483871
                          1.442
                                   1.439
                                            1.43
                                                     1.411
                                                             1.399
                                                                      1.019
        13.488 13.469 13.439 13.378 13.289 12.571
                                            Average of yearly averages:
                                                                              10.2694666666667
Inputs generated by pe5.pl - November 2006
Data used for this run:
Output File: CAArtGRD
Metfile: w23234.dvf
PRZM scenario: CARowCropRLF.txt
Metfile:
Chemical Name: Myclobutanil total
Description
                Variable Name
Description
                                            Units
                                                   Comments
                                   288.8
Molecular weight
                                            g/mol
                          henry
Henry's Law Const.
Vapor Pressure vapr
                                            atm-m^3/mol
                                   torr
             sol
Solubility
Kd Kd
                          142
                                   mg/L
                 0.719
                          mg/L
Koc Koc
Photolysis half-life
                          mg/L
                                                    Half-life
                                            days
                          kdp
Aerobic Aquatic Metabolism
                                   kbacw
                                            630
                                                     days
                                                             Halfife
Anaerobic Aquatic Metabolism
                                   kbacs
                                                    davs
                                                             Halfife
Aerobic Soil Metabolism
                                   asm
                                            315
                                                     days
                                                             Halfife
                                            Half-life
Hydrolysis: pH 7
                                   days
Method: CAM
                 2
                          integer See PRZM manual
Incorporation Depth:
                          DEPI
                                            cm
                                            kg/ha
Application Rate:
                          TAPP
                                   0.112
Application Efficiency:
Spray Drift DRFT
                                   APPEFF
                                           0.99
                                                    fraction
                          0.01
                                   fraction of application rate applied to pond
                                            dd/mm or dd/mmm or dd-mm or dd-mmm days Set to 0 or delete line for single app.
Application Date
                          Date
                                   1-3
Interval 1
                 interval
                                   14
                                            days
                                   kg/ha
14
app. rate 1
Interval 2
                 apprate 0.112
                                                    Set to 0 or delete line for single app.
                 interval
                                            days
app. rate 2
Interval 3
                 apprate 0.112
                                   kg/ha
                                                    Set to 0 or delete line for single app.
                 interval
                                            davs
                                   14
                 apprate 0.112
                                   kg/ha
app. rate 3
Interval 4
                                            days
                                                   Set to 0 or delete line for single app.
                 interval
                                   14
           4
                 apprate 0.112
                                   kg/ha
app. rate
Interval 5
                                                    Set to 0 or delete line for single app.
                                            davs
                 interval
                                   14
                 apprate 0.112
                                   kg/ha
app. rate 5
```

Record 17:

Record 18:

IPSCND UPTKF

PLDKRT

FILTRA

PLVKRT

FEXTRC 0.5 Flag for Index Res. EPA Pond Flag for runoff calc. RUNOFF none none, monthly or total (average of entire run)

CA lettuce aerial spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L

stored as CALetAir.out Chemical: Myclobutanil total PRZM environment: CalettuceSTD.txt modified Tueday, 21 February 2006 at 00:38:22 EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w23273.dvf modified Wedday, 3 July 2002 at 09:04:22 Water segment concentrations (ppb) 96 hr 21 Day 60 Day 90 Day Peak Year Yearly 29.4 31.55 29.36 31.51 29.18 31.37 20.45 31.07 14.88 30.93 5.277 1961 1962 42.38 60.23 42.11 59.92 41.88 59.36 41.56 54.42 1963 42.32 39.39 45.36 1964 60.18 65.96 69.73 65.9 69.66 63.11 67.93 1965 65.64 61.03 59.31 1966 69.42 65.28 63.56 68.74 78.56 1967 69.2 69.13 69.01 68.86 67.44 1968 81.5 81.39 81.17 80.88 68.33 1969 81.94 81.86 81.68 81.13 1970 95.68 95.58 95.21 87.49 83.76 80.74 96.17 95.42 94.96 92.02 90.22 90.7 89.57 92.34 90.52 86.44 1972 92.43 88.67 90.59 89.48 114 113 1974 114 113 103 97.1 90.26 1975 113 112 112 113 108 117 116 1976 117 117 115 115 105 1977 117 117 116 115 111 1978 130 130 129 127 127 114 124 117 123 123 123 124 119 117 115 116 115 116 115 1980 116 112 115 111 1981 114 1982 109 109 108 108 108 105 101 100 100 1983 101 101 98.14 95.32 90.03 95.24 89.95 94.92 89.73 94.25 87.96 93.94 87.61 90.59 85.58 1984 1985 1986 95.03 94.96 94.68 93.27 92.74 89.81 93.82 1987 94.36 94.28 94.1 93.6 92 95.14 90.39 91.17 1988 95.05 94.86 94.48 94.12 1989 90.32 90.05 89.49 89.22 86.01 1990 81.95 81.89 81.68 81.37 81.23 Sorted results Prob. Peak 96 0.032258064516129 96 hr 21 Day 60 Day 90 Day Yearly 130 130 129 127 0.0645161290322581 0.0967741935483871 124 117 124 117 123 117 123 116 114 112 123 116 117 117 115 115 0.129032258064516 117 116 116 111 0.161290322580645 117 115 111116 115 112 114 112 0.193548387096774 115 115 115 108 0.225806451612903 114 113 114 105 0.258064516129032 0.290322580645161 108 103 113 113 113 108 105 109 108 109 100 98.14 0.32258064516129 0.354838709677419 101 95.9 97.1 94.96 101 101 100 92.4

96.26 95.68

95.32 95.14

95.03

94.36

92.43 90.59

90.39

81.95

81.94

81.5 69.73

69.2

0.387096774193548 0.419354838709677

0.451612903225806

0.483870967741936

0.516129032258065

0.548387096774194

0.580645161290323

0.612903225806452

0.645161290322581

0.67741935483871 0.709677419354839

0.741935483870968 0.774193548387097

0.806451612903226

96.17 95.58

95.24

95.05

94.96

94.28

92.34

90.52

90.32

81.89

81.86

81.39

69.66

69.13

95.21

94.92

94.86

94.68

92.02 90.22

90.05

81.68

81.68

81.17 69.42

69.01

95.42 94.48

94.25

93.82

93.27 90.7

89.57 89.49

87.96

87.49

81.37 81.37

80.88

68.86

67.93

92

91.17

90.59

90.26

89.81

86.44

86.01

85.58

79.42

68.33

63.56

94.12 93.94

93.6

92.74

89.22

88.67

87.61

83.76

81.23

81.13 78.56

```
59.31
0.838709677419355
                           65.96
                                   65.9
                                            65.64
                                                     63.11
                                                             61.03
                                            59.92
42.11
                                   60,18
                                                    59.36
41.88
                                                             54.42
41.56
0.870967741935484
                          60.23
                                                                      45.36
0.903225806451613
                           42.38
                                   42.32
                                                                      39.39
0.935483870967742
                           31.55
                                   31.51
                                            31.37
                                                    31.07
                                                             30.93
                                                                      30.35
0.967741935483871
                           29.4
                                   29.36
                                            29.18
                                                    20.45
                                                             14.88
                                                                      5.277
                          116.9
                                  116
                                                    111.9
                                            Average of yearly averages:
                                                                             83.09023333333333
Inputs generated by pe5.p1 - Novemeber 2006
Data used for this run:
Output File: CALetAir
Metfile: w23273.dvf
PRZM scenario: CAlettuceSTD.txt
                                   pond298.exv
EXAMS environment file:
Chemical Name: Myclobutanil total
                                            Units
Description
                 Variable Name
                                   Value
Molecular weight
                         mwt
                                   288.8
                                           g/mol
Henry's Law Const.
Vapor Pressure vapr
                          henry
                                            atm-m^3/mol
                                   torr
Solubility
                 sol
                                   mg/L
      Кď
кd
                 0.719
                          mg/L
Koc
        Koc
                          mg/L
Photolysis half-life kdp
Aerobic Aquatic Metabolism
                                            davs
                                                    Half-life
                                                             Halfife
                                   kbacw
                                            630
                                                    days
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                                             Halfife
                                   kbacs
                                                    days
                                            315
                                                             Halfife
                                   asm
                                                    davs
               рн 7
2
Hydrolysis:
                                   days
                                            Half-life
Method: CAM
                          integer See PRZM manual
Incorporation Depth:
                          DEPI
                                   0.14
                                           kg/ha
Application Rate:
                          TAPP
Application Efficiency:
                                   APPEFF
                                           0.95
                                                    fraction
                DRFT
                         0.05
Spray Drift
                                   fraction of application rate applied to pond
                                           dd/mm or dd/mmm or dd-mm or dd-mmm days Set to 0 or delete line for single app.
Application Date
                          Date
                                   20-2
Interval 1
                 interval
                                   14
                                   kg/ha
                 apprate 0.14
app. rate 1
Interval 2
                 interval
                                   14
                                           days
                                                    Set to 0 or delete line for single app.
                                   kg/ha
app. rate 2
                 apprate 0.14
```

days

days

days

days

days

days

days

days

days

EPA Pond

 $1\overline{4}$

14

14

kg/ha

kg/ha

kg/ha

kg/ha 14

kg/ha 14

kg/ha

kg/ha

kg/ha

kg/ha

14

14

14

TR

CA lettuce ground spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L

stored as CALetgrd.out Chemical: Myclobutanil total PRZM environment: CAlettuceSTD.txt EXAMS environment: pond298.exv

Interval 3

app. rate 3 Interval 4

app. rate 4

Interval 5

Interval 6

app. rate 6

app. rate 7

app. rate 8 Interval 9

app. rate 9 Interval 10

Interval 11

app. rate 11 Record 17:

Record 18:

IPSCND UPTKF

PLDKRT

FEXTRC Flag for Index Res. Run

app. rate 10

Interval 8

app. rate 5

interval

interval

interval

apprate 0.14

apprate 0.14

apprate 0.14

apprate 0.14 interval

apprate 0.14

apprate 0.14 interval

apprate 0.14

apprate 0.14

apprate 0.14

interval

interval

interval

FILTRA

PLVKRT

0.5

Flag for runoff calc. RUNOFF none

modified Tueday, 21 February 2006 at 00:38:22 modified Thuday, 29 August 2002 at 16:33:30

none, monthly or total (average of entire run)

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

```
Metfile: w23273.dvf \, modified Wedday, 3 July 2002 at 09:04:22 Water segment concentrations (ppb)
```

60 Day

21 Day

Peak

90 Day Yearly

```
1961
1962
          27.58
27.88
                    27.54
27.85
                              27.36
27.76
                                        18.25
27.59
                                                 12.42
27.45
35.65
                                                           3.393
                                                           26.72
 1963
          36.17
                    36.12
                              35.96
                                        35.77
                                                           33.8
 1964
          52.94
                    52.9
                              52.66
                                        52.12
                                                 46.91
                                                           38
 1965
          57.42
                    57.37
                                        54.5
                                                  52.24
                                                           50.84
 1966
          60.15
                    60.09
                              59.87
                                        58.25
                                                 55.43
                                                           53.88
                                        58.72
69.74
69.67
 1967
          59.43
                    59.37
                              59.14
                                                 58.52
          70.27
 1968
                    70.17
                              69.96
                                                 67.35
                                                           56.78
          70.57
                    70.5
                              70.24
                                                 69.22
                                                           67.56
 1969
                    83.77
83.29
                              83.45
82.99
                                        75.34
82.26
 1970
          83.87
                                                 71.34
                                                           68.28
                                                           79.73
 1971
          83.34
                                                 81.68
                    79.14
77.56
                              78.86
77.3
                                        77.54
76.7
 1972
          79.22
                                                  75.3
                                                           72.94
          77.62
 1973
                                                  76.51
                                                           73.58
 1974
          101
                    101
                              100
                                        89.25
                                                 83.3
                                                           76.11
 1975
                              99.8
          100
                                        98.98
                                                 99.05
                    100
                                                           94.74
 1976
          103
                    103
                              103
                                        102
                                                 101
                                                           91.19
 1977
          103
                    103
                              103
                                        102
                                                 101
                                                           97.12
                                                 113
 1978
          116
                    116
                              115
                                        114
                                                           100
 1979
          111
                    111
                              111
                                        110
                                                 110
                                                           105
          104
                    104
                              103
                                        103
                                                 102
                                                           97.57
 1981
          101
                    101
                              101
                                        101
                                                 101
                                                           96.91
          94.89
87.08
81.23
 1982
                    94.85
                              94.61
                                        93.96
                                                 93.58
                                                           90.71
                             86.7
80.89
                                        86.09
80.28
 1983
                    87
                                                 85.98
                                                           83.37
                    81.17
                                                 79.87
 1984
                                                           75.76
          75.6
80.72
                    75.54
80.66
                             75.34
80.42
                                        73.72
78.86
 1985
                                                 73.38
                                                           70.61
 1986
                                                 78.17
                                                           74.97
                             79.91
79.93
                                       79.38
79.33
                                                 79'.45
78.79
1987
          80.12
                    80.07
                                                           77.06
          80.29
 1988
                    80.21
                                                           76,12
          75.83
67.07
                    75.78
67.02
1989
                             75.55
                                        75.03
                                                 74.65
                                                           70.62
1990
                             66.84
                                        66.52
                                                 66.27
                                                           62.94
Sorted results
Prob. Peak 96 0.032258064516129
                             21 Day
                                                 90 Day
                    96 hr
                                        60 Day
                                                           Yearly
                             116
                                       116
                                                 115
                                                           114
                                                                    113
                                                                              105
 0.0645161290322581
                              111
                                        111
                                                 111
                                                           110
                                                                    110
                                                                              100
                                                                              97.57
97.12
0.0967741935483871
                             104
                                       104
                                                 103
                                                           103
                                                                    102
0.129032258064516
                             103
                                       103
                                                 103
                                                           102
                                                                    101
                                                                              96.91
94.74
0.161290322580645
                             103
                                       103
                                                 103
                                                           102
                                                                    101
0.193548387096774
                             101
                                       101
                                                 101
                                                           101
                                                                    101
                                                           98.98
93.96
0.225806451612903
0.258064516129032
                                                 100
99.8
                                                                    99.05
93.58
                             101
                                       101
                                                                              91.19
                             100
                                       100
                                                                              90.71
0.290322580645161
0.32258064516129
                             94.89
87.08
                                       94.85
87
                                                 94.61
                                                           89.25
                                                                    85.98
                                                                              83.37
                                                 86.7
                                                           86.09
                                                                    83.3
                                                                              79.73
0.354838709677419
0.387096774193548
                                       83.77
                             83.87
                                                 83.45
                                                           82.26
                                                                    81.68
                                                                              77.06
                             83.34
                                       83.29
                                                 82.99
                                                           80.28
                                                                    79.87
                                                                              76.12
0.419354838709677
                             81.23
                                       81.17
                                                 80.89
                                                           79.38
                                                                    79.45
                                                                              76.11
                                       80.66
80.21
                                                 80.42
79.93
                                                                    78.79
78.17
0.451612903225806
                             80.72
                                                           79.33
                                                                              75.76
0.483870967741936
                             80.29
                                                           78.86
                                                                              74.97
                                       80.07
79.14
                                                           77.54
76.7
                                                                    76.51
75.3
0.516129032258065
                             80.12
                                                 79.91
                                                                              73 58
0.548387096774194
                             79.22
                                                 78.86
                                                                              72.94
0.580645161290323
0.612903225806452
                                                 77.3
75.55
                                                           75.34
75.03
                             77.62
                                       77.56
                                                                    74.65
                                                                              70.62
                                       75.78
                             75.83
                                                                    73.38
                                                                              70.61
0.645161290322581
0.67741935483871
                             75.6
                                       75.54
                                                 75.34
                                                           73.72
                                                                    71.34
                                                                              68.28
                             70.57
                                       70.5
                                                 70.24
                                                           69.74
                                                                    69.22
                                                                              67.56
0.709677419354839
                             70.27
                                       70.17
                                                 69.96
                                                           69.67
                                                                    67.35
                                                                              62.94
0.741935483870968
                             67.07
                                       67.02
                                                 66.84
                                                           66.52
                                                                    66.27
                                                                              56.78
0.774193548387097
                             60.15
                                       60.09
                                                 59.87
                                                           58.72
                                                                              56.76
                                       59.37
57.37
0.806451612903226
                             59.43
                                                 59.14
                                                           58.25
                                                                    55.43
                                                                              53.88
0.838709677419355
                             57.42
                                                 57.14
                                                           54.5
                                                                    52.24
                                                                              50.84
                             52.94
36.17
                                       52.9
36.12
                                                          52.12
35.77
0.870967741935484
                                                 52.66
                                                                    46.91
                                                                              38
0.903225806451613
                                                 35.96
                                                                              33.8
                                                                    35.65
                             27.88
27.58
                                       27.85
27.54
                                                 27.76
27.36
                                                                              26.72
3.393
0.935483870967742
                                                          27.59
                                                                    27.45
0.967741935483871
                                                          18.25
                                                                    12.42
0.1
         103.9 103.9
                             103
                                       102.9
                                                 101.9
                                                          97.525
                                                 Average of yearly averages:
                                                                                       70.768766666667
```

Inputs generated by pe5.pl - Novemeber 2006

Data used for this run: Output File: CALetgrd Metfile: w23273.dvf

```
EXAMS environment file:
                                 pond298.exv
Chemical Name: Myclobutanil total
                                 Value
Description
                Variable Name
                                         Units
                                                 Comments
Molecular weight
                                 288.8
Henry's Law Const.
Vapor Pressure vapr
                                         atm-m^3/mol
                         henry
                         142
Solubility
                sol
                                 mg/L
Kd
       Кď
                0.719
                        mg/L
Koc
        Koc
                         ma/L
Photolysis half-life
                                         days
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                 kbacw
                                         630
                                                 days
                                                         Halfife
                                 kbacs
                                                 days
                                                         Halfife
                                         315
Aerobic Soil Metabolism
                                 asm
                                                 days
                                                         Halfife
                                 days
Hydrolysis:
              рН 7
                                         Half-life
Method: CAM
                         integer See PRZM manual
Incorporation Depth:
                        DEPI
TAPP
                                         CM
Application Rate:
                                         kg/ha
                                 0.14
Application Efficiency:
                                 APPEFF
                                         0.99
                                                 fraction
Spray Drift
                DRFT
                         0.01
                                 fraction of application rate applied to pond
Application Date
                                         dd/mm or dd/mmm or dd-mmm or dd-mmm days Set to 0 or delete line for single app.
                        Date
                                 20-2
Interval 1
               interval
                                         days
app. rate 1
                apprate 0.14
                                 kg/ha
Interval 2
                                         days
                interval
                                 14
                                                 Set to 0 or delete line for single app.
                                 kg/ha
                apprate 0.14
app. rate 2
Interval 3
                interval
                                         days
                                                 Set to 0 or delete line for single app.
                                 14
                                 kg/ha
app. rate 3
                 apprate 0.14
Interval 4
                interval
                                 14
                                         davs
                                                Set to 0 or delete line for single app.
app. rate 4
Interval 5
                 apprate 0.14
                                 kg/ha
                                                Set to 0 or delete line for single app.
                interval
                                 14
                                         days
                apprate 0.14
app. rate 5
                                 kg/ha
Interval 6
                interval
                                 14
                                         days
                                                 Set to 0 or delete line for single app.
app. rate 6
Interval 7
                apprate 0.14
                                 kg/ha
                interval
                                 14
                                         days
                                                 Set to 0 or delete line for single app.
                apprate 0.14
app. rate 7
                                 kg/ha
Interval 8
                interval
                                 14
                                         days
                                                 Set to 0 or delete line for single app.
app. rate 8
                apprate 0.14
                                 kg/ha
Interval 9
                interval
                                 \overline{14}
                                        days
                                                 Set to 0 or delete line for single app.
                                 kg/ha
app. rate 9
                apprate 0.14
Interval 10
                interval
                                 \overline{14}
                                                 Set to 0 or delete line for single app.
app. rate 10
                apprate 0.14
                                 kg/ha
Interval 11
                interval
                                                 Set to 0 or delete line for single app.
                                 kg/ha
                apprate 0.14
app. rate 11
Record 17:
        IPSCND
        UPTKF
Record 18:
                PLVKRT
        PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run
                                 IR
                                         EPA Pond
Flag for runoff calc. RUNOFF none
                                         none, monthly or total (average of entire run)
```

PRZM scenario: CAlettuceSTD.txt

CA Okra aerial spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L

```
stored as CAORKAIR.out
Chemical: Myclobutanil total
PRZM environment: CAtomato_WirrigSTD.txt
                                                       modified Monday, 28 May 2007 at 22:43:54
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w23155.dvf modified Wedday, 3 July 2002 at 09:04:20
Water segment concentrations (ppb)
                            21 Day 60 Day 90 Day
1.391 1.358 1.329
         Peak
                  96 hr
         1.403
3.012
                  1.401
                           1.391
2.986
                                                       0.8911
1961
1962
                  3.007
                                     2.928
                                              2.874
                                                       2.342
1963
                            4.97
         5.017
                  5.008
                                     4.879
                                              4.811
                                                       4.129
         5.331
5.709
                                     5.195
1964
                  5.323
                            5.288
1965
                  5.699
                            5,658
                                     5.557
                                              5.486
                                                        4.9
1966
         6.228
                  6.216
                                     6.047
                                                        5.441
                            6.166
                                     6.944
6.995
1967
         7.135
                  7.121
                            7.067
                                              6.854
                                                       6.092
1968
         7.188
                  7.178
                            7.125
                                              6.887
                                                        6.225
         7.267
1969
                  7,253
                            7.189
                                     7.056
                                              6.955
                                                       6.258
```

6.898

```
8.749
8.316
1972
         9.119
                   9.098
                            8.997
                                              8.564
                                                       7.64
1973
          8.571
                   8.552
                            8.472
                                              8.195
                                                       7.493
1974
          8.201
                   8.187
                            8.126
                                     8.103
                                              8.101
                                                       7.306
          9.086
                   9.07
                            8.995
                                     8.842
                                              8.716
                                                       7.961
                                     8.318
7.712
1976
          8.573
                   8.554
                            8.477
                                              8.201
                                                       7 475
1977
          7.904
                   7.891
                            7.841
                                                       7.142
                                              7.596
                                     7.718
7.219
1978
          7.938
                   7.922
                            7.857
                                              7.606
                                                       6.942
                            7.36
1979
          7.442
                   7.426
                                              7.107
                                                       6.439
          7.237
1980
                   7.225
                                     7.056
                                              6.959
                                              6.773
7.103
          7.085
                            7.018
1981
                   7.075
                                     6.885
                                                       6.199
          7.424
                                     7.201
                   7.408
                            7.34
                                                       6.377
                  7.309
7.712
                            7.223
7.648
                                              6.957
7.413
1983
         7.331
                                     7.054
                                                       6.585
1984
          7.727
                                     7.515
                                                       6.758
                   7.366
                            7.317
7.411
1985
         7.377
                                     7.218
                                              7.131
                                                       6 568
1986
          7.482
                                     7.282
                                              7.181
                                                       6.569
                  7.82
8.473
                            7.757
8.414
1987
         7.835
                                     7.625
                                              7.522
                                                       7.069
         8.487
1988
                                     8.281
                                              8.17
                                                       7.44
                                     7.699
7.242
1989
         7.859
                   7.848
                            7.823
                                              7.601
                                                       6.945
         7.43
                   7.418
                            7.366
                                              7.144
1990
                                                       6.501
Sorted results
Prob. Peak 96
0.032258064516129
                  96 hr
                                              90 Day
                            21 Day
                                     60 Day
                                                       Yearly
                                              8.997
8.995
                           9.119
9.086
                                     9.098
                                                       8.842
8.749
                                                                8.716
                                                                         7.961
0.0645161290322581
                                     9.07
                                                                8.564
                                                                         7.64
                                                                         7.493
7.475
                            8.573
8.571
0.0967741935483871
                                     8.554
                                              8.477
                                                       8.318
                                                                8.201
0.129032258064516
                                     8.552
                                              8.472
                                                       8.316
                                                                8.195
0.161290322580645
                            8.487
                                     8.473
                                              8.414
                                                       8,281
                                                                8.17
                                                                         7.44
0.193548387096774
                                     8.399
                                                       8.169
                                              8.323
                            8.413
                                                                8.101
                                                                         7.333
0.225806451612903
0.258064516129032
                                     8.187
7.922
                                                       8.103
7.718
                            8.201
                                              8.126
                                                                8.079
                                                                         7.306
                            7.938
                                              7.857
                                                                7.606
                                                                         7.142
                           7.904
7.859
                                     7.891
7.848
                                              7.841
7.823
0.290322580645161
                                                       7.712
                                                                7.601
                                                                         7.069
0.32258064516129
                                                       7.699
                                                                7.596
                                                                         6.945
                                     7.82
7.712
                           7.835
7.727
0.354838709677419
                                                       7.625
                                                                7.522
0.387096774193548
                                                       7.515
                                              7.648
                                                                7.413
                                                                         6.758
0.419354838709677
                            7.482
                                     7.469
                                              7.411
                                                       7.282
                                                                7.181
                                                                         6.585
0.451612903225806
                            7.442
                                     7.426
                                              7.366
                                                       7.242
                                                                7.144
                                                                         6.569
0.483870967741936
                            7.43
                                     7.418
                                              7.36
                                                       7.219
                                                                7.131
                                                                         6.568
                           7.424
7.377
                                    7.408
7.366
                                              7.34
7.317
                                                       7.218
7.201
0.516129032258065
                                                                7.107
                                                                         6.501
0.548387096774194
                                                                7.103
                                                                         6.439
0.580645161290323
0.612903225806452
                                                                6.959
                           7.331
                                     7.309
                                              7.223
                                                       7.056
                                                                         6.377
                           7.267
                                              7.189
                                                                         6.267
                                     7.253
                                                       7.056
                                                                6.957
                           7.237
7.188
                                     7.225
7.178
                                              7.176
7.125
0.645161290322581
                                                       7.054
                                                                6.955
                                                                         6.258
0.67741935483871
                                                       6.995
                                                                6.887
                                                                         6.246
                                     7.142
                                                       6.944
0.709677419354839
                           7.135
7.085
0.741935483870968
                                                                6.791
6.773
                                     7.121
                                              7.067
                                                       6.898
                                                                         6.199
0.774193548387097
                                     7.075
                                              7.018
                                                       6.885
                                                                         6.092
                           6.228
5.709
0.806451612903226
                                     6.216
                                              6.166
                                                       6.047
                                                                5.966
                                                                         5.441
0.838709677419355
                                     5.699
                                                       5.557
                                                                         4.9
                                              5.658
                                                                5.486
                                     5.323
5.008
                                                                         4.566
0.870967741935484
                           5.331
                                              5,288
                                                       5.195
                                                                5,121
                           5.017
                                              4.97
                                                                4.811
0.903225806451613
                                                       4.879
                                                                         4.129
0.935483870967742
                           3.012
                                     3.007
                                              2.986
                                                       2.928
                                                                2.874
                                                                         2.342
0.967741935483871
                           1.403
                                    1.401
                                                       1.358
                                                                         0.8911
                                              1.391
                                                                1.329
         8.5728 8.5538 8.4765 8.3178 8.2004 7.4912
0.1
                                              Average of yearly averages:
                                                                                  6.20330333333333
Inputs generated by pe5.pl - Novemeber 2006
```

8.079

8.323

Data used for this run:
Output File: CAORKAIR
Metfile: w23155.dvf
PRZM scenario: CAtomato_WirrigSTD.txt
EXAMS environment file: pond298.exv
Chemical Name: Myclobutanil total
Description Variable Name Value Unit
Molecular weight mwt 288.8 g/mc

Description Variable Name Value Units Comments Molecular weight mwt 288.8 g/mol Henry's Law Const. henry atm-m^3/mol Vapor Pressure vapr torr

Vapor Pressure vapr torr
Solubility sol 142 mg/L
Kd Kd 0.719 mg/L
Koc Koc mg/L
Photolysis half-life kdp

1971

8.413

Photolysis half-life Half-life days Aerobic Aquatic Metabolism Anaerobic Aquatic Metabolism khacw 630 days Halfife kbacs days Halfife 315 days Aerobic Soil Metabolism asm Halfife

```
Hydrolysis:
                               days
                                       Half-life
               рн 7
                       integer See PRZM manual
Method: CAM
               2
Incorporation Depth:
                       DEPI
                               0.14
Application Rate:
                                       kg/ha
                       TAPP
                               APPEFF
Application Efficiency:
                                       0.95
                                               fraction
               DRFT
Spray Drift DF
Application Date
                               fraction of application rate applied to pond
                       0.05
                                       dd/mm or dd/mmm or dd-mm or dd-m
                       Date
                               1-4
                                              Set to 0 or delete line for single app.
Interval 1
               interval
                               10
                                       days
               apprate 0.14
                               kg/ha
app. rate 1
Interval 2
               interval
                               10
                                       days Set to 0 or delete line for single app.
               apprate 0.14
app. rate 2
                               kg/ha
                                       days Set to 0 or delete line for single app.
Interval 3
               interval
                               10
                               kg/ha
               apprate 0.14
app. rate 3
Record 17:
               FILTRA
       IPSCND
        UPTKF
Record 18:
               PLVKRT
       PLDKRT
       FEXTRC 0.5
                               IR
                                       EPA Pond
Flag for Index Res. Run
Flag for runoff calc. RUNOFF none
                                      none, monthly or total (average of entire run)
```

CA Okra ground spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L

```
stored as CAORKGRD.out
Chemical: Myclobutanil total
PRZM environment: CAtomato_WirrigSTD.txt modified Monday, 28 May 2007 at 22:43:54 EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w23155.dvf modified Wedday, 3 July 2002 at 09:04:20
Water segment concentrations (ppb)
                   96 hr 21 Day 60 Day 90 Day Yearly 0.4515 0.4496 0.3712 0.3296 0.2115 1.126 1.12 1.099 1.084 0.9209
         0.452
1961
1962
         1.128
                            2.528
                                      2.494
2.303
1963
         2.55
                   2.546
                                                2,469
                                                         2.156
         2.348
                   2.345
                                                2.277
         2.418
2.737
                   2.363
2.735
                            2.348
2.726
                                      2.316
2.545
                                                2.292
1965
                                                         2.112
                                                2.519
1966
1967
         3.312
                   3.306
                            3,282
                                      3.24
                                                3.196
                                                         2.893
         3.298
                            3.274
                                      3.234
                                                3.202
                                                         2.951
1968
                   3.296
1969
         3.27
                   3.265
                            3.237
                                      3.2
                                                3.166
                                                         2 904
                                      3.414
                                                3.108
                                                         2.886
         4.063
                   4.057
                            4.038
1970
1971
         4.53
                   4.522
                            4.48
                                      4.371
                                                4.288
                                                         3,976
         5.274
1972
                   5.264
                            5.204
                                      5,058
                                                4.949
                                                         4.237
1973
         4.474
                   4.465
                            4.435
                                      4.395
                                                4.366
                                                         4.054
1974
                   4.996
                            4.978
                                      4.942
                                                4.918
                                                         3.87
         5.027
                                                4.888
1975
                   5.02
                             4.988
                                      4.933
1976
         4.504
                   4,494
                            4.455
                                      4.362
                                                4.309
                                                         4.023
                   4.052
                                                3.852
         4.064
                            4.002
                                      3.908
                                                         3.681
1977
1978
         3.865
                   3.858
                            3.829
                                      3.79
                                                3.751
                                                         3 517
                                      3.273
                                                3.239
                                                         3.001
1979
                            3.312
         3.347
                   3.34
                   3.153
2.933
                                                3.041
2.841
1980
         3.158
                            3.132
                                      3.085
                                                         2.797
                                      2.873
                                                         2.713
1981
         2.935
                            2.912
                   3.306
                            3.278
                                      3.239
                                                3.207
                                                         2.913
                            3.64
                                      3.552
                                                3.502
                                                         3.065
1983
         3.696
                   3.684
                             3.49
                                      3.449
                                                3.418
                                                         3.199
1984
         3.524
                   3.517
1985
         3.146
                   3.138
                            3.108
                                      3.096
                                                3.074
                                                         2.949
         3.172
                   3.167
                            3.144
                                      3.107
                                                3.076
1986
                                                         2.889
1987
         4 044
                   4.04
                             4.026
                                      3.95
                                                3.609
                                                         3.368
         4.158
                   4.151
                            4.124
                                      4.078
                                                4.031
                                                         3.75
1988
                            3.532
1989
         3.558
                   3.554
                                      3.494
                                                3.462
                                                         3.235
                  3.038
                                      2.983
                                                2.956
                                                         2.753
         3.042
1990
Sorted results
Prob. Peak 96 0.032258064516129
                            21 Day
5.274
5.027
                                      60 Day
5.264
                                               90 Day
5.204
                  96 hr
                                                                   4.949
                                                         5.058
                                                                   4.918
4.888
                                                                            4.237
4.054
                                      5.02
0.0645161290322581
                                                4.988
                                                         4.942
                                      4.996
                                                4.978
                                                         4.933
0.0967741935483871
                            5
                             4.53
                                      4.522
                                                4.48
                                                         4.395
                                                                   4.366
                                                                            4.023
0.129032258064516
                                                4.455
                                                                   4.309
                                                                            3.976
0.161290322580645
                            4.504
                                      4.494
                                                         4.371
0.193548387096774
                                                         4.362
                                                                            3.87
```

```
4.064
                                    4.057
                                             4.038
                                                      3.95
                                                               3.852
                                                                       3.681
0.258064516129032
                                                     3.908
3.79
0.290322580645161
                           4.063
                                    4.052
                                             4.026
                                                              3.751
                                                                       3.517
                           4.044
                                                               3.609
0.32258064516129
                                    4.04
                                             4.002
                                                                        3.368
0.354838709677419
0.387096774193548
                           3.865
                                    3.858
                                             3.829
                                                      3.552
                                                              3.502
                                                                       3.235
                                                               3.462
                                             3.64
                                                      3.494
                                                                       3.199
                                    3.684
                           3.696
                           3.558
3.524
                                    3.554
3.517
                                             3.532
3.49
                                                     3.449
3.414
                                                              3.418
3.239
0.419354838709677
                                                                       3 065
0.451612903225806
                                                                       3.001
                                             3.312
3.282
0.483870967741936
0.516129032258065
                                    3.34
3.306
                                                     3.273
3.24
                                                              3.207
3.202
                                                                       2.951
2.949
                           3.347
                           3.312
0.548387096774194
0.580645161290323
                                    3.306
3.296
                                             3.278
3.274
                                                     3.239
3.234
                           3.312
                                                               3.196
                                                                       2.913
                           3.298
                                                               3.166
                                                                       2.904
0.612903225806452
0.645161290322581
                           3.27
3.172
                                    3.265
                                             3.237
                                                      3.2
                                                               3.108
                                                                       2.893
                                                      3.107
                                                              3.076
                                                                       2.889
                                    3.167
                                             3.144
0.67741935483871
0.709677419354839
                           3.158
                                    3.153
                                                      3.096
                                                               3.074
                                                                       2.886
                                                                       2.797
2.753
                                                              3.041
                           3.146
                                    3.138
                                             3.108
                                                      3.085
0.741935483870968
                           3.042
                                    3.038
                                             3.019
                                                      2.983
                                                               2.956
0.774193548387097
                                                                       2.713
                           2.935
                                    2.933
                                             2.912
                                                      2.873
                                                              2.841
0.806451612903226
                           2.737
                                                      2.545
                                             2.726
                                                                       2.406
0.838709677419355
                           2.55
                                    2.546
                                             2.528
                                                      2.494
                                                              2,469
                                                                       2.156
0.870967741935484
                           2.418
                                    2.363
                                             2.348
                                                      2.316
                                                               2.292
                                                                       2.127
                                             2.333
1.12
0.903225806451613
                           2.348
                                    2.345
                                                     2.303
                                                              2.277
                                                                       2.112
                                                               1.084
0.935483870967742
                           1.128
                                    1.126
                                                      1.099
                                                                       0.9209
0.967741935483871
                           0.452
                                    0.4515
                                            0.4496 0.3712 0.3296
                                                                       0.2115
0.1
         4.953 4.9486 4.9282 4.8792
                                             4.8358 4.0509
                                            Average of yearly averages:
                                                                                3.003513333333333
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: CAORKGRD
Metfile:
                w23155.dvf
PRZM scenario: CAtomato_WirrigSTD.txt
EXAMS environment file: pond298.exv Chemical Name: Myclobutanil total
Description
                 Variable Name
                                   Value
                                            Units
                                                     Comments
Molecular weight
                                   288.8
                          mwt
                                            g/mol
Henry's Law Const.
Vapor Pressure vapr
                          henry
                                             atm-m^3/mol
                                    torr
                 sol
0.719
Solubility
                           142
                                   mg/L
      Kď
Kd
                          mq/L
        Koc
Koc
                           mg/L
Photolysis half-life
                           kdp
                                            davs
                                                     Half-life
Aerobic Aquatic Metabolism
                                    kbacw
                                            630
                                                     days
                                                              Halfife
Anaerobic Aquatic Metabolism
                                   kbacs
                                                     days
                                                              Halfife
                                                     days
Aerobic Soil Metabolism
                                            315
                                                              Halfife
                рH 7
2
                                            Half-life
Hvdrolvsis:
                                    davs
Method: CAM
                           integer See PRZM manual
Incorporation Depth:
Application Rate:
                          DEPI
                                            cm
                                            kg/ha
                                   0.14
                          TAPP
Application Efficiency:
                                   APPEFF
                                            0.99
                                                     fraction
Spray Drift
                 DRFT
                           0.01
                                    fraction of application rate applied to pond
Application Date
                                            dd/mm or dd/mmm or dd-mmm or dd-mmm days Set to 0 or delete line for single app.
                          Date
                                   1-4
                                   10
                 interval
                                            days
Interval 1
app. rate 1
                  apprate 0.14
                                   kg/ha
Interval 2
                                            davs
                                                     Set to 0 or delete line for single app.
                  interval
                                    10
                  apprate 0.14
                                   kg/ha
app. rate 2
Interval 3
                                            davs
                                                     Set to 0 or delete line for single app.
                  interval
                                   10
app. rate 3
                  apprate 0.14
                                    kg/ha
Record 17:
                 FILTRA
         IPSCND
        UPTKF
Record 18:
                 PLVKRT
        PLDKRT
                0.5
        FEXTRC
Flag for Index Res. Run
                                   IR
                                            EPA Pond
Flag for runoff calc. RUNOFF none
                                            none, monthly or total (average of entire run)
```

4.078

4.031

3.75

FL Okra aerial spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAQM = 630 days, Kd = 0.719

stored as FLORKAIR.out Chemical: Myclobutanil total

0.225806451612903

4.151

4.124

4.158

PRZM environment: FLtomatoSTD.txt modified Monday, 28 May 2007 at 22:54:10 EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w12844.dvf modified Wedday, 3 July 2002 at 09:04:30

Water segment concentrations (ppb)

```
21 Day 60 Day 90 Day Yearly
                  96 hr
         Peak
         3.589
6.323
                  3.58
6.31
                           3.56
6.257
                                    3.498
6.127
                                             3.438
6.023
                                                      2.52
4.918
1961
1962
         6.787
9.043
                           6.713
8.952
                                             6.452
8.767
1963
                  6.775
                                    6.56
                                                      5.83
                                                      7.582
                                    8.846
                  9.024
1964
1965
                  10.36
         10.38
                           10.28
                                    10.11
                                             9.971
                                                      8.585
                  14.73
         14.76
                                             14.14
                                                      11.95
1966
                           14.61
                                    14.34
         15.55
                                    15.07
                                             14.96
                                                      13.15
1968
         14,47
                  14.45
                           14.41
                                    14.26
                                             14.1
                                                      12.47
                                             14.05
                                                      12.34
         14.62
                  14.59
                           14.5
1969
         19.18
14.68
1970
                  19.14
                           19.03
                                    18.67
                                             18.36
                                                      15.4
                           14.57
1971
                                    14.42
                                             14.3
                  14.66
                                             12.27
1972
         12.67
                  12.65
                           12.55
                                    12.38
                                                      10.96
         10.91
                           10.79
                                    10.7
                                             10.61
                                                      9.446
                  10.88
1973
1974
         14.28
                  14.24
                           14.11
                                    13.86
                                             13.64
                                                      11.37
                                                      9.746
         11.21
13.49
1975
                  11.19
                           11.11
                                    10.95
                                             10.84
                           13.34
10.78
                                                      11.04
9.707
1976
                  13.46
                                    13.08
                                             12.89
         10.89
1977
                  10.87
                                    10.64
                                             10.62
1978
         10.07
                  10.06
                           10.02
                                    9.859
                                             9.717
                                                      8.619
                                             8.89
1979
         9.358
                  9.339
                           9.254
                                    9.053
                                                      8.04
         10.2
                  10.18
1980
                           10.09
                                    9.949
                                             9.834
                                                      8.52
         10.2
14.44
                           10.11
14.28
1981
                  10.18
                                    9.915
                                             9.759
                                                      8.524
                  14.41
                                    14.01
                                             13.79
                                                      11.43
                                             14.37
15.17
1983
         14.84
                  14.82
                           14.71
                                    14.54
                                                      12.48
                           15.57
                                    15.36
1984
         15.71
                  15.68
                  17.26
17.23
                           17.11
17.16
1985
         17.29
                                    16.87
                                             16.61
                                                      14.2
                                    16.87
                                                      14.47
         17.26
                                             16.62
1986
                  16.44
15.09
                                    16.13
14.79
                                             15.9
14.59
1987
         16.47
                           16.38
                                                      13.84
                                                      12.85
1988
         15.12
                           14.99
1989
         12.75
                  12.72
                           12.66
                                    12.52
                                             12.39
                                                      11.02
1990
         12.54
                  12.52
                           12.41
                                    12.24
                                             12.08
                                                      10.47
Sorted results
Prob. Peak 96
0.032258064516129
                  96 hr
                           21 Day
                                             90 Day
                                    60 Day
                                             19.03
17.16
17.11
16.38
                           19.18
17.29
                                    19.14
17.26
                                                      18.67
                                                               18.36
                                                                        15.4
0.0645161290322581
                                                      16.87
                                                               16.62
                                                                        14.47
                                    17.23
16.44
                                                      16.87
16.13
0.0967741935483871
                           17.26
                                                               16.61
                                                                        14.2
                           16.47
                                                               15.9
                                                                        13.84
0.129032258064516
                                                               15.17
14.96
                                             15.57
15.39
0.161290322580645
0.193548387096774
                           15.71
15.55
                                    15.68
15.52
                                                      15.36
                                                                        13.34
                                                      15.07
                                                                        13.15
                                             14.99
14.71
                                                      14.79
14.54
0.225806451612903
                           15.12
                                    15.09
                                                               14.59
                                                                        12.89
                                                                        12.85
0.258064516129032
                           14.84
                                    14.82
                                                               14.37
0.290322580645161
                           14.76
                                    14.73
                                             14.61
                                                      14.42
                                                               14.3
                                                                        12.48
                                                      14.34
                                                               14.14
                           14.68
                                             14.57
                                                                        12.47
0.32258064516129
                                    14.66
0.354838709677419
                           14.62
                                    14.59
                                             14.5
                                                      14.26
                                                               14.1
                                                                        12.34
0.387096774193548
                           14.47
                                    14.45
                                             14.41
                                                      14.25
                                                               14.05
                                                                        11.95
0.419354838709677
                           14.44
                                    14.41
                                             14.28
                                                      14.01
                                                                        11.43
                                    14.24
13.46
                                             14.11
13.34
0.451612903225806
                           14.28
                                                      13.86
                                                               13.64
                                                                        11.37
0.483870967741936
                           13.49
                                                      13.08
                                                                        11.04
                                                               12.89
                                    12.72
12.65
                                             12.66
12.55
0.516129032258065
                           12.75
                                                      12.52
                                                               12.39
                                                                        11.02
                                                      12.38
                                                               12.27
                                                                        10.96
0.548387096774194
                           12.67
                                                      12.24
10.95
0.580645161290323
                           12.54
                                    12.52
                                             12.41
                                                               12.08
                                                                        10.47
                                                               10.84
0.612903225806452
                           11.21
                                    11.19
                                                                        9.746
                                             11.11
                                             10.79
10.78
0.645161290322581
                           10.91
                                    10.88
                                                      10.7
                                                               10.62
                                                                        9.707
                                                                        9.446
                                                      10.64
                                                               10.61
0.67741935483871
                           10.89
                                    10.87
0.709677419354839
0.741935483870968
                           10.38
                                    10.36
                                             10.28
                                                      10.11
                                                               9.971
                                                                        8.619
                                                      9.949
                                                               9.834
                           10.2
                                    10.18
                                             10.11
                                                                        8.585
                                                               9.759
9.717
0.774193548387097
                           10.2
                                    10.18
                                             10.09
                                                      9.915
                                                                        8.524
0.806451612903226
                           10.07
                                    10.06
                                             10.02
                                                      9.859
                                                                        8.52
0.838709677419355
                                             9.254
                                                               8.89
                           9.358
                                    9.339
                                                      9.053
                                                                        8.04
                                                               8.767
6.452
                                    9.024
6.775
0.870967741935484
                           9.043
                                             8.952
                                                      8.846
                                                                        7.582
                                             6.713
                                                      6.56
                                                                        5.83
                           6.787
0.903225806451613
                           6.323
0.935483870967742
                                    6.31
                                             6.257
                                                      6.127
                                                               6.023
                                                                        4.918
                                    3.58
                                             3.56
                                                      3.498
                                                               3.438
                                                                        2.52
0.967741935483871
                           3.589
       17.181 17.151 17.037 16.796 16.539 14.164
0.1
```

0.1 1/.181 1/.151 1/.03/ 16./96 16.539 14.164
Average of yearly

Average of yearly averages: 10.5902333333333

Inputs generated by pe5.pl - Novemeber 2006

Data used for this run:

```
Output File: FLORKAIR
Metfile: w12844.dvf
PRZM scenario: FLtomatoSTD.txt
EXAMS environment file:
                                  pond298.exv
Chemical Name: Myclobutanil total
                Variable Name Value
ht mwt 288.8
                                           Units Comments
Description
Molecular weight
                        mwt
                                           g/mol
                          henry
Henry's Law Const.
Vapor Pressure vapr
                                            atm-m^3/mol
                                   torr
Solubility sol
Kd Kd 0.719
                          142
                                   mg/L
                         mg/L
Koc
        Koc
Photolysis half-life
                                                    Half-life
                          kdp
                                           days
Aerobic Aquatic Metabolism
                                   kbacw
                                            630
                                                    days
                                                             Halfife
                                                             Halfife
Anaerobic Aquatic Metabolism
                                  kbacs
                                                    davs
                                                    days
Aerobic Soil Metabolism
                                            315
                                                             Halfife
Hydrolysis: pH 7
Method: CAM 2
                                   days
                                           Half-life
                          integer See PRZM manual
Incorporation Depth:
                          DEPT
                                           сm
Application Rate:
Application Efficiency:
Trift DRFT 0.05
                                   0.14
                                            kg/ha
                                  APPEFF 0.95 fraction fraction of application rate applied to pond
                                           dd/mm or dd/mmm or dd-mm or dd-mmm days Set to 0 or delete line for single app.
Application Date
                         Date
                                   1-2
                                   10
                 interval
Interval 1
                                   kg/ha
                 apprate 0.14
app. rate 1
Interval 2
                                           days
                                                    Set to 0 or delete line for single app.
                 interval
                                   10
app. rate 2
                 apprate 0.14
                                   kg/ha
Interval 3
                 interval
                                   10
                                           davs
                                                   Set to 0 or delete line for single app.
                 apprate 0.14
                                   kg/ha
app. rate 3
Record 17:
                 FILTRA
        IPSCND
        UPTKF
                 PLVKRT
Record 18:
        PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run
                                  IR
                                           EPA Pond
Flag for runoff calc. RUNOFF none
                                          none, monthly or total (average of entire run)
FL Okra ground spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAQM = 630 days, Kd = 0.719
stored as FLORKGRD.out
Chemical: Myclobutanil total
PRZM environment: FLtomatoSTD.txt
```

```
modified Monday, 28 May 2007 at 22:54:10
EXAMS environment: pond298.exv
Metfile: w12844.dvf modified
                             nd298.exv modified Thuday, 29 August 2002 at 16:33:30 modified Wedday, 3 July 2002 at 09:04:30
Water segment concentrations (ppb)
                   96 hr
2.618
                              21 Day 60 Day 90 Day Yearly 2.594 2.552 2.509 1.776
          2.625
                              2.594
1961
          4.704
4.736
                    4.694
4.726
1962
                              4.655
                                        4.559
                                                  4.48
                                                            3.586
                                        4.577
1963
                              4.684
                                                  4.49
                                                            4.046
          6.543
                    6.529
                              6.503
                                        6.445
                                                  6.399
1964
          7.688
12.09
                    7.672
12.07
                             7.64
11.97
                                        7.512
11.75
1965
                                                  7.4
                                                            6.348
                                                            9.678
1966
                    12.79
11.49
1967
          12.81
                              12.68
                                        12.42
                                                  12.26
                                                            10.8
                              11.44
                                                  11.23
                                                            9.961
                                        11.37
1968
          11.51
                                                            9.735
12.89
1969
          11.54
                    11.52
                              11.45
                                        11.25
                                                  11.08
1970
          16.25
                    16.21
                              16.11
                                        15.81
                                                  15.54
1971
         11.73
9.573
                              11.65
                                        11.56
                                                  11.51
                                                            10,27
                    9.557
7.751
1972
                              9.487
                                        9.308
                                                  9.228
                                                            8.309
                                                            6.772
8.788
                                        7.579
                                                  7.539
1973
          7.767
                              7.686
1974
          11.25
                    11.23
                              11.12
                                        10.93
                                                  10.76
                              8.094
                                        8.027
                                                            7.084
1975
          8.167
                    8.153
          10.36
7.685
                              10.24
                                        10.04
7.508
                                                  9.885
7.497
1976
                    10.34
                                                            8.384
                    7.669
1977
          6.729
6.152
                    6.718
6.139
                              6.688
                                        6.587
5.949
1978
                                                  6.493
                                                            5.806
                                                  5.841
                                                            5.203
1979
                              6.769
6.803
1980
          6.831
                    6.818
                                        6.682
                                                  6.611
                                                            5.697
                                                  6.568
1981
          6.864
                    6.851
                                        6.671
                                                            5.707
         11.32
11.78
                    11.29
11.76
                              11.18
11.68
                                        10.96
11.52
                                                  10.79
11.39
1982
                                                            8.774
                                                            9.88
1983
                                                  12.24
13.77
1984
          12.7
                    12.68
                              12.59
                                        12.4
                                                            10.75
         14.32
                                        13.98
                                                            11.64
                   14.29
                              14.16
1985
```

```
14.26
                                                     11.94
        13.46
12.07
1987
                 13.44
                           13.39
                                   13.2
                                            13.01
                                                     11.3
1988
                 12.05
                          11.97
                                   11.8
                                            11.65
                                                     10.28
         9.603
                                                     8.407
1989
                  9.586
                           9.538
                                   9.456
                                            9.375
1990
         9.417
                  9.397
                           9.358
                                    9.212
                                            9.085
                                                     7.866
Sorted results
                 96 hr
                                            90 Day
                          21 Day 60 Day
Prob.
        Peak
                                                     Yearly
                          16.25
14.32
                                   16.21
14.29
                                            16.11
14.19
                                                     15.81
13.98
                                                             15.54
0.032258064516129
                                                                      12.89
0.0645161290322581
                                                             13.77
                                                                      11.94
0.0967741935483871
                           14.26
                                   14.24
                                            14.16
                                                     13.96
                                                             13.75
                                                                      11.64
                                   13.44
                                                              13.01
0.129032258064516
                          13.46
                                            13.39
                                                     13.2
                                                                      11.3
0.161290322580645
                           12.81
                                    12.79
                                            12.68
                                                     12.42
                                                              12.26
                                                                      10.8
0.193548387096774
                          12.7
                                   12.68
                                            12.59
                                                     12.4
                                                             12.24
                                                                      10.75
0.225806451612903
                          12.09
                                   12.07
                                            11.97
                                                     11.8
                                                                      10.28
                          12.07
11.78
                                   12.05
11.76
                                            11.97
11.68
                                                     11.75
11.56
0.258064516129032
                                                             11.56
                                                                      10.27
0.290322580645161
                                                              11.51
                          11.73
11.54
                                            11.65
11.45
0.32258064516129
                                   11.71
                                                     11.52
                                                             11.39
                                                                      9.88
0.354838709677419
                                   11.52
                                                     11.37
                                                              11.23
                                                                      9.735
                          11.51
11.32
                                            11.44
11.18
0.387096774193548
                                   11.49
                                                     11.25
                                                             11.08
                                                                      9.678
0.419354838709677
                                                     10.96
                                    11.29
                                                              10.79
                                                                      8.788
                          11.25
10.36
                                   11.23
10.34
                                            11.12
10.24
                                                     10.93
10.04
0.451612903225806
                                                             10.76
                                                                      8.774
0.483870967741936
                                                             9.885
                                                                      8.407
                          9.603
9.573
                                                     9.456
9.308
0.516129032258065
                                   9.586
                                            9.538
                                                             9.375
                                                                      8.384
0.548387096774194
                                            9.487
                                                             9.228
                                   9.557
                                                                      8.309
0.580645161290323
0.612903225806452
                                   9.397
8.153
                                                     9.212
8.027
                                                                      7.866
7.084
                          9.417
                                            9.358
                                                             9.085
                                                              7.994
                                            8.094
                          8.167
                                                                      6.958
0.645161290322581
                          7.767
                                   7.751
                                            7.686
                                                     7.579
                                                              7.539
                                            7.64
0.67741935483871
                          7.688
                                   7.672
                                                     7.512
                                                             7.497
                                                                      6.772
0.709677419354839
                          7.685
                                   7.669
                                            7.602
                                                     7.508
                                                             7.4
                                                                      6.348
0.741935483870968
                                                             6.611
                          6.864
                                   6.851
                                            6.803
                                                     6.682
                                                                      5.806
0.774193548387097
                          6.831
                                            6.769
                                                              6.568
                                                                      5.707
                                   6.818
0.806451612903226
                          6.729
                                   6.718
                                            6.688
                                                     6.587
                                                             6,493
                                                                      5.697
0.838709677419355
                          6.543
                                   6.529
                                            6.503
                                                     6.445
                                                              6.399
                                                                      5.529
                          6.152
4.736
                                   6.139
4.726
0.870967741935484
                                            6.083
                                                     5.949
                                                             5.841
                                                                      5,203
0.903225806451613
                                                     4.577
                                                                      4.046
                                            4.684
                                                             4.49
0.935483870967742
                          4.704
                                   4.694
                                            4.655
                                                     4.559
                                                             4.48
                                                                      3.586
0.967741935483871
                                   2.618
                                            2.594
                                                     2.552
                                                             2.509
                                                                      1.776
                          2.625
        14.18 14.16
                         14.083 13.884 13.676 11.606
                                            Average of yearly averages:
                                                                               8.1388
Inputs generated by pe5.pl - November 2006
```

Data used for this run: Output File: FLORKGRD Metfile: w12844.dvf
PRZM scenario: FLtomatoSTD.txt EXAMS environment file: pond298.exv Chemical Name: Myclobutanil total Variable Name Value Description Comments Description Variabl
Molecular weight
Henry's Law Const.
Vapor Pressure vapr
Solubility sol
Kd Kd 0.719 mwt 288.8 g/mol atm-m^3/mol torr 142 mg/L Kď mg/L mg/L Koc Koc kdp Photolysis half-life davs Half-life Aerobic Aquatic Metabolism 630 kbacw Halfife davs Anaerobic Aquatic Metabolism Aerobic Soil Metabolism kbacs days Halfife Halfife days asm рН 7 2 Hydrolysis: days Half-life integer See PRZM manual Method: CAM Incorporation
Application Rate:
Application Efficiency:
Carav Drift DRFT 0.01
Date Date cm 0.14 kg/ha APPEFF 0.99 fraction fraction of application rate applied to pond 1-2 dd/mm or dd/mmm or dd-mm or dd-mmm Interval 1 interval 10 days Set to 0 or delete line for single app.

apprate 0.14 kg/ha app. rate 1 days Set to 0 or delete line for single app. Interval 2 interval 10 app. rate 2 apprate 0.14 kg/ha

Interval 3 interval 10 days Set to 0 or delete line for single app. apprate 0.14 kg/ha app. rate 3

Record 17: FILTRA

1986

14.24

14.19

13.96

13.75

IPSCND

Record 18:

LO: PLVKRT
PLDKRT
FEXTOR

FLDKRT FEXTRC 0.5

Flag for Index Res. Run IR EPA Pond

Flag for runoff calc. RUNOFF none none, monthly or total(average of entire run)

CA Tropical Fruit aerial spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L

stored as CATFAIR.out Chemical: Myclobutanil total Chemical: MyClobutanii total
PRZM environment: CAcitrus_WirrigSTD.txt modified Monday, 28 May 2007 at 22:41:26
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w23155.dvf modified Wedday, 3 July 2002 at 09:04:20
Water segment concentrations (ppb)

Water	begmene	COIZCOILO	14010220	(555)				
Year	Peak	96 hr	21 Day	60 Day	90 Day	Yearly		
1961	5.408	5.398	5.357	5.264	5.174	4.156		
1962	12.58	12.56	12.47	12.27	12.14	10.38		
1963	21.96	21.93	21.81	21.54	21.32	18.46		
1964	22.36	22.33	22.21	21.96	21.76	19.8		
1965	23.64	23.61	23.47	23.19	22.97	20.8		
1966	24.49	24.45	24.28	24	23.79	21.64		
1967	25.1	25.07	24.20	24.67	24.44	22.14		
1968		24.47	24.37	24.07	23.79	21.55		
1969	24.51 24.27	24.47	24.32	23.78	23.79	21.24		
1970	23.8	23.77	23.65	23.76	23.14	21.11		
	25.76	25.72	25.58	25.30	25.14	22.99		
1971 1972	25.77	25.72	25.43	24.75	24.67	23.12		
1973	26.98	26.94	26.78	26.46	26.22	23.68		
1974	28.07	28.03	27.87	27.56	27.34	24.51		
1975	27.32	27.29	27.2	26.9	26.67	24.21		
1976	26.25	26.21	26.09	25.79	25.56	23.19		
1977	26.44	26.4	26.22	25.75	25.68	23.29		
1978	33.1	33.05	32.87	32.55	32.29	28.54		
	29.9	29.86	29.69	29.37	29.13	26.43		
1979 1980	27.45	27.41	27.28	27.08	26.88	24.62		
1981	26.94	26.9	26.74	26.44	26.18	23.68		
1982	26.06	26.02	25.87	25.51	25.21	22.82		
	26.45	26.42	26.3	26.02	25.81	23.67		
1983		25.91	25.79	25.5	25.28	23.07		
1984	25.94	25.91 25	24.84	24.56	24.36	22.28		
1985	25.04	24.78	24.64	24.37		22.26		
1986	24.81		25.19	24.9	24.10	22.69		
1987	25.4	25.36	25.5	25.25	25.04	22.8		
1988	25.62	25.59	25.26	24.99	24.79	22.6		
1989	25.48	25.44						
1990	24.83	24.79	24.63	24.36	24.16	21.99		
Cortod	results							
Prob.	Peak	, 96 hr	21 Day	60 Day	90 Day	Yearly		
	58064516		33.1	33.05	32.87	32.55	32.29	28.54
	16129032		29.9	29.86	29.69	29.37	29.13	26.43
	74193548		28.07	28.03	27.87	27.56	27.34	24.62
	32258064		27.45	27.41	27.28	27.08	26.88	24.51
	90322580		27.32	27.29	27.2	26.9	26.67	24.21
	48387096		26.98	26.94	26.78	26.46	26.22	23.68
	06451612		26.94	26.9	26.74	26.44	26.18	23.68
	64516129		26.45	26.42	26.3	26.02	25.81	23.67
	22580645		26.44	26.4	26.22	25.95	25.68	23.29
	80645161		26.25	26.21	26.09	25.79	25.56	23.19
	38709677		26.06	26.02	25.87	25.51	25.28	23.12
	96774193		25.94	25.91	25.79	25.5	25.21	23.02
	54838709		25.77	25.72	25.58	25.31	25.16	22.99
	12903225		25.76	25.7	25.5	25.25	25.04	22.82
	70967741		25.70	25.59	25.43	24.99	24.79	22.8
	29032258		25.48	25.44	25.26	24.9	24.73	22.69
	23032236 87096774		25.48	25.36	25.19	24.75	24.67	22.6
	4516 12 90		25.4	25.07	24.97	24.73	24.44	22.28
	03225806		25.04	25.07	24.84	24.56	24.36	22.14
	61290322		24.83	24.79	24.64	24.37	24.16	22.06
	19354838		24.81	24.78	24.63	24.36	24.16	21.99
	77419354		24.51	24.47	24.32	24.02	23.79	21.64
0.7030	, , 413334	.000	74.JT	24.41	24.32	22.02	23.75	51.04

```
0.741935483870968
                                   24.45
                                            24.28
                                                              23.79
                           24.49
                                   24.24 23.77
                                            24.1
23.65
                                                     23.78
23.36
                                                             23.54
                                                                      21.24
                                                              23.14
                                                                      21.11
0.806451612903226
                          23.8
0.838709677419355
                           23.64
                                   23.61
                                            23.47
                                                              22.97
                                                                      20.8
                                   22.33
21.93
                                            22.21
21.81
                                                     21.96
21.54
0 870967741935484
                           22.36
                                                              21.76
                                                                      19.8
                                                              21.32
0.903225806451613
                           21.96
0.935483870967742
                           12 58
                                   12.56
                                            12.47
                                                     .12.27
                                                              12.14
                                                                      10.38
                                            5.357
0.967741935483871
                           5.408
                                   5.398
         28.008 27.968 27.811 27.512 27.294 24.609
                                            Average of yearly averages:
                                                                               21.7822
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: CATFAIR
                 w23155.dvf
Metfile:
PRZM scenario: CAcitrus_WirrigSTD.txt
EXAMS environment file: pond298
                                  pond298.exv
Chemical Name: Myclobutanil total
                  Variable Name Value
                                            Units
                                                    Comments
Description
                                            g/mol
Molecular weight
                          mwt
                                   288.8
Henry's Law Const.
Vapor Pressure vapr
                                            atm-m^3/mol
                          henry
                          142
Solubility
                 sol
                                   ma/L
                          mg/L
Koc
        Koc
                          mg/L
Photolysis half-life
                           kdp
                                            days
                                                     Half-life
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                                             Halfife
                                   kbacw
                                            630
                                                     days
                                                     days
                                                             Halfife
                                   kbacs
                                            315
Aerobic Soil Metabolism
                                   asm
                                                     days
                                                             Halfife
               рн 7
                                            Half-life
                                   days
Hydrolysis:
Method: CAM
                 2
                          integer See PRZM manual
Incorporation Depth:
                         DEPI
                                            CM
Application Rate:
                          TAPP
                                   0.28
                                            kg/ha
Application Efficiency:
                                   APPEFF
                                            0.95
                                                     fraction
                 DRFT
                                   fraction of application rate applied to pond 1-1 dd/mm or dd/mmm or dd-mmm or dd-mmm
Spray Drift
                          0.05
Application Date
                          Date
                                   1-1
                  interval
                                   14
                                                     Set to 0 or delete line for single app.
Interval 1
                                            days
                                   kg/ha
                 apprate 0.28 interval
app. rate 1
Interval 2
                                   14
                                            days
                                                     Set to 0 or delete line for single app.
                                   kg/ha
app. rate 2
                  apprate 0.28
                                   14
                                                     Set to 0 or delete line for single app.
Interval 3
                                            days
                  interval
                                   kg/ha
                 apprate 0.28 interval
app. rate 3
Interval 4
                                            days
                                                     Set to 0 or delete line for single app.
                                   14
app. rate 4
Interval 5
                  apprate 0.28
                                   kg/ha
                                                     Set to 0 or delete line for single app.
                                            days
                  interval
                                   14
                                   kg/ha
app. rate 5
                  apprate 0.28
                                                     Set to 0 or delete line for single app.
Interval 6
                                            days
                 interval
                                   14
           6
                  apprate 0.28
                                   kg/ha
app. rate
                                                     Set to 0 or delete line for single app.
Interval 7
                 interval
                                   14
                                            days
app. rate 7
                  apprate 0.28
                                   kg/ha
Record 17:
                 FILTRA
         IPSCND
        UPTKF
Record 18:
                 PLVKRT
         PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run
                                   IR
                                            EPA Pond
Flag for runoff calc. RUNOFF none
                                          none, monthly or total (average of entire run)
CA Tropical Fruit ground spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAQM = 630 days,
Kd = 0.719 \text{ mg/L}
stored as CATFGRD.out
Chemical: Myclobutanil total
PRZM environment: CAcitrus_WirrigSTD.txt modified Monday, 28 May 2007 at 22:4 EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w23155.dvf modified Wedday, 3 July 2002 at 09:04:20
                                                    modified Monday, 28 May 2007 at 22:41:26
Water segment concentrations (ppb)
         Peak
                          21 Day 60 Day
                                            90 Day
Year
        1.101
5.193
                 1.099
5.187
                          1.091
5.148
                                   1.072
5.091
                                            1.054
                                                     0.8495
4.205
1961
1962
                                            5.052
                                   12.19
10.56
1963
         12.38
                 12.36
                          12.31
                                            12.04
                                                     10.18
                          10.61
                 10.66
```

1964

10.68

```
1966
          10.18
                    10.16
                             10.11
                                        10.06
                                                 10.01
                                                           9.144
                                                 9.75
8.771
8.11
1967
          9.973
                    9.964
                              9.926
                                        9.817
                                                           8.906
          9.011
8.347
                                        8.847
8.18
                                                           7.989
7.355
1968
                    8.998
                              8.943
                    8.335
                              8.288
1969
                    9.295
9.778
                             9.249
9.724
1970
          9.308
                                        8.03
                                                  7.65
                                                           7.204
                                        9.676
                                                 9.657
                                                           8.988
1971
          9.791
1972
          10.44
                    10.41
                              10.3
                                        10.02
                                                 9.811
                                                           8.903
                    10.55
11.76
                              10.49
                                                 10.35
                                                           9.376
1973
          10.56
                                        10.43
                                                           10.28
9.949
 1974
          11.77
                              11.71
                                        11.66
                                                 11.56
1975
          11.05
                    11.03
                              11
                                        10.94
                                                 10.89
          9.827
                    9.815
                              9.781
                                        9.721
                                                  9.674
                                                           8.81
                    9.965
17.17
                                        9.836
17.04
                                                 9.736
17.01
1977
          9.982
                              9.915
                                                           8.938
          17.2
                              17.12
1978
                                                           14.59
                             13.76
11.37
                                       13.71
11.31
                                                 13.67
11.27
1979
          13.82
                    13.8
                                                           12.42
                                                           10.43
                    11.44
1980
          11.45
          10.56
9.745
1981
                    10.54
                              10.49
                                        10.4
                                                 10.3
                                                           9.412
                                        9.552
                                                           8.575
                    9.731
                             9.675
                                                 9.421
1982
          10.05
9.234
                             10
9.183
1983
                    10.03
                                        9.94
                                                 9.89
                                                           9.195
1984
                    9.223
                                        9.123
                                                 9.076
                                                           8.322
                                                 7.93
7.496
1985
          8.098
                    8.086
                              8.035
                                        7.978
                                                           7.355
                             7.607
7.988
                                                           6.887
                                        7.545
1986
          7.656
                    7.646
                                                           7.394
7.49
1987
          8.055
                    8.042
                                        7.936
                                                 7.887
                             8.274
8.077
                                       8,214
1988
          8.332
                    8.32
                                                 8.167
          8.137
                    8.129
                                       8.023
                                                 7.982
1990
          7.345
                    7.334
                             7.287
                                        7.229
                                                 7.185
                                                           6.584
Sorted results
                    96 hr
                             21 Day
Prob. Peak 96 0.032258064516129 0.0645161290322581
                                       60 Day
                                                 90 Day
                                                           Yearly
                             17.2
13.82
                                       17.17
13.8
                                                 17.12
13.76
                                                           17.04
13.71
                                                                    17.01
13.67
                                                                              14.59
                                                                              12.42
0.0967741935483871
0.129032258064516
                             12.38
11.77
                                       12.36
11.76
                                                 12.31
11.71
11.37
                                                           12.19
                                                                    12.04
                                                                              10.43
                                                                              10.28
                                                           11.66
                                                                    11.56
0.161290322580645
0.193548387096774
                                                                    11.27
10.89
                              11.45
                                       11.44
                                                           11.31
                                                                              10.18
                                                                              9.949
                             11.05
                                       11.03
                                                 11
                                                           10.94
                                                                     10.51
0.225806451612903
                              10.68
                                       10.66
                                                 10.61
                                                           10.56
                                                                              9.676
0.258064516129032
                             10.56
                                       10.55
                                                 10.49
                                                           10.43
                                                                    10.35
                                                                              9.412
0.290322580645161
                             10.56
                                       10.54
                                                 10.49
                                                                              9.376
                                                           10.4
0.32258064516129
0.354838709677419
                                                 10.46
10.3
                             10.53
                                       10.51
                                                           10.36
                                                                    10.29
                                                                              9.313
                                                           10.06
                             10.44
                                       10.41
                                                                     10.01
                                                                              9.195
0.387096774193548
0.419354838709677
                             10.18
10.05
                                       10.16
10.03
                                                           10.02
9.94
                                                                    9.89
9.811
                                                 10.11
                                                                              9.144
                                                                              8.988
                                                 10
0.451612903225806
0.483870967741936
                             9.982
9.973
                                       9.965
9.964
                                                                    9.75
9.736
                                                 9.926
                                                           9.836
                                                                              8.938
                                                 9.915
                                                                              8,906
                                                           9.817
                                       9.815
9.778
                                                 9.781
9.724
0.516129032258065
                             9.827
                                                           9.721
                                                                    9.674
                                                                              8.903
                                                           9.676
                                                                    9.657
0.548387096774194
                             9.791
                                                                              8.81
0.580645161290323
                             9.745
                                       9.731
                                                 9.675
                                                           9.552
                                                                     9.421
                                                                              8.575
0.612903225806452
                             9.308
                                       9.295
                                                 9.249
                                                           9.123
                                                                    9.076
                                                                              8.322
0.645161290322581
                             9.234
                                       9.223
                                                 9.183
                                                           8.847
                                                                     8.771
                                                                              7.989
0.67741935483871
0.709677419354839
                             9.011
8.347
                                       8.998
                                                 8.943
                                                           8.214
                                                                    8.167
                                                                              7.49
                                                           8.18
                                                                              7.394
                                       8.335
                                                 8.288
                                                                     8.11
0.741935483870968
0.774193548387097
                                                                    7.982
7.93
                             8.332
                                       8.32
                                                 8.274
                                                           8.03
                                                                              7.355
                             8.137
                                                 8.077
                                       8.129
                                                           8.023
0.806451612903226
0.838709677419355
                             8.098
                                       8.086
                                                 8.035
                                                           7.978
                                                                    7.887
                                                                              7.285
                                                                              7.204
                                                 7.988
                                                           7.936
                                       8.042
                             8.055
                                                                     7.65
                             7.656
7.345
                                                           7.545
7.229
0.870967741935484
                                       7.646
                                                 7.607
                                                                    7,496
                                                                              6.887
                                                 7.287
                                                                    7.185
                                                                              6.584
0.903225806451613
                                       7.334
0.935483870967742
                             5.193
                                       5.187
                                                 5.148
                                                           5.091
                                                                    5.052
                                                                              4.205
                                                                              0.8495
0.967741935483871
                             1.101
                                       1.099
                                                 1.091
                                                           1.072
                                                                    1.054
         12.319 12.3
                                      12.137 11.992 10.415
0.1
                             12.25
                                                 Average of yearly averages:
                                                                                        8.533483333333333
```

10.36

10.29

9.313

10.53

1965

10.51

10.46

Inputs generated by pe5.pl - November 2006

Data used for this run: Output File: CATFGRD
Metfile: w23155.dvf
PRZM scenario: CAcitrus_WirrigSTD.txt EXAMS environment file: pond298.exv Chemical Name: Myclobutanil total

Description Variable Name Value Units

Molecular weight mwt Henry's Law Const.

henry

Comments 288.8 g/mol

atm-m^3/mol

```
Vapor Pressure vapr
Solubility
                        142
                sol
                                 mg/L
                0.719
                        mg/L
Κđ
Koc
        Koc
                        ma/L
                                                 Half-life
Photolysis half-life
                         kdp
                                         days
                                                         Halfife
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                 kbacw
                                         630
                                                 davs
                                                          Halfife
                                 kbacs
                                                 days
                                         315
Aerobic Soil Metabolism
                                 asm
                                                 days
                                                         Halfife
                                         Half-life
                рн 7
Hydrolysis:
                                 days
Method: CAM
                         integer See PRZM manual
Incorporation Depth:
                        DEPI
                                         cm
                                 0.28
Application Rate:
                        TAPP
                                         kg/ha
Application Efficiency:
                                 APPEFF
                                         0.99
                                                 fraction
                                 fraction of application rate applied to pond 1-1 dd/mm or dd/mmm or dd-mmm or dd-mmm
Spray Drift
                DRFT
                         0.01
Application Date
                        Date
                interval
                                 14
                                                 Set to 0 or delete line for single app.
Interval 1
                                         days
                                 kg/ha
14
                apprate 0.28
app. rate 1
Interval 2
                interval
                                         days
                                                 Set to 0 or delete line for single app.
                                 kg/ha
14
app. rate 2
Interval 3
                apprate 0.28
                                                 Set to 0 or delete line for single app.
                                         days
                interval
                                 kg/ha
                apprate 0.28
app. rate 3
Interval 4
                                         days
                                                 Set to 0 or delete line for single app.
                interval
                                 kg/ha
app. rate 4
                apprate 0.28
Interval 5
                                                 Set to 0 or delete line for single app.
                                         days
                interval
                                 14
                                 kg/ha
                apprate 0.28
          5
app. rate
                                                 Set to 0 or delete line for single app.
                                         days
Interval 6
                interval
                                 14
                apprate 0.28
                                 kg/ha
app. rate 6
                                                 Set to 0 or delete line for single app.
Interval 7
                interval
                                 14
                                         davs
                                 kg/ha
app. rate 7
                apprate 0.28
Record 17:
                FILTRA
        IPSCND
        TIPTKE
Record 18:
                PLVKRT
        ייאאת.זק
        FEXTRC
               0.5
Flag for Index Res. Run
                                 TR
                                         EPA Pond
Flag for runoff calc. RUNOFF mone
                                         none, monthly or total (average of entire run)
```

torr

FL Tropical Fruit aerial spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L

stored as FLTFAIR.out Chemical: Myclobutanil total modified Monday, 28 May 2007 at 22:44:32 modified Thuday, 29 August 2002 at 16:33:30 PRZM environment: FLavocadoSTD.txt EXAMS environment: pond298.exv Metfile: w12839.dvf modified modified Tueday, 2 July 2002 at 19:04:28 Water segment concentrations (ppb)

```
21 Day 60 Day 90 Day Yearly
                   96 hr
Year
         Peak
                   5.719
9.131
12.2
13.76
14.53
         5.731
9.155
12.23
                             5.647
9.074
                                                 5.369
8.732
                                                           3.564
7.144
                                       5.486
                                       8.869
1962
                             12.06
                                       11.81
                                                 11.62
                                                           9.866
1963
                             13.61
14.38
17.58
17.77
         13.8
14.55
                                                           11.52
12.41
1964
                                       13.33
                                                 13.14
                                                 13.93
                                        14.11
1965
         17.79
17.98
                                       17.16
17.4
                                                 16.84
17.18
1966
                   17.75
                                                           14.4
                   17.95
                                                           15.54
1967
                             18.73
18.06
                                                           16.15
15.96
1968
         18.95
                   18.91
                                       18,39
                                                 18.15
                                                 17.56
                                       17.76
1969
          18.3
                   18.25
                                       17.93
17.33
1970
         18.5
                    18.45
                             18.24
                                                 17.62
                                                           15.82
                                                 17.13
                   17.75
                             17.64
                                                           15.52
1971
         17.8
                                                 17.1
16.78
                    17.87
                              17.68
                                        17.33
                                                           15.4
                   17.45
17.05
                                       16.97
                                                           15.22
1973
         17.49
                             17.25
1974
                             16.86
                                       16.56
                                                 16.36
                             16.42
16.48
                                                           14.41
1975
         16.65
                   16.6
                                       16.14
                                                 15.95
                                                 15.97
                    16.65
1976
                                       16.19
          16.7
                             20.63
19.22
                                                 20.04
18.75
1977
         20.94
                   20.88
                                       20.27
                                                           16.88
                                       18.95
                                                           17.09
                   19.45
1978
         19.5
1979
          25.45
                   25.37
                              25.1
                                       24.9
                                                 24.71
                                                           20.46
                              22.35
                                       22.1
                                                           20.15
                                                 21.9
1980
         22.66
                   22.6
                   20.65
20.78
                                       20.15
1981
          20.71
                             20.41
                                                 19.94
                                                           18.27
                             20.54
                                                 20.06
                                                           17.82
1982
         20.84
                                                 18.7
18.3
1983
          19.45
                   19.41
                             19.22
                                       18.9
                                                           17.03
                                       18.54
                                                           16.59
                              18.84
1984
         18.98
                   18.93
                                                 17.82
17.67
1985
          18.57
                   18.52
                              18.3
                                       18.01
                                                           16.2
                                                           15.9
                             18.16
1986
         18.41
                   18.36
                                       17.87
```

```
17
16.89
                                    17.12
16.53
         17.74
17.05
                  17.7
17.01
                           17.5
16.81
1988
                                                       15.2
1989
                                              16.34
                                                       14.77
1990
         16,77
                  16.73
                           16.54
                                     16.25
                                              16.06
                                                       14.45
Sorted results
                  96 hr
                                             90 Day
                           21 Day
                                    60 Day
                                                       Yearly
         Peak
Prob.
                           25.45
22.66
                                    25.37
22.6
                                             25.1
22.35
0.032258064516129
                                                       24.9
                                                                24.71
                                                                        20.46
                                                       22.1
                                                                21.9
                                                                         20.15
0.0645161290322581
0.0967741935483871
                           20.94
                                     20.88
                                              20.63
                                                       20.27
                                                                20.06
                                                                         18.27
                                                       20.27
                                                                20.04
                                     20.78
                                              20.54
                                                                         17.82
0.129032258064516
                           20.84
0.161290322580645
                            20.71
                                     20.65
                                              20.41
                                                       20.15
                                                                19.94
                                                                         17.09
0.193548387096774
                           19.5
                                     19.45
                                              19.22
                                                       18.95
                                                                18.75
                                                                         17.03
0.225806451612903
                           19.45
                                     19.41
                                              19.22
                                                       18.9
                                                                18.7
                                                                         16.88
0.258064516129032
                           18.98
                                     18.93
                                              18.84
                                                       18.54
                                                                18.3
                                                                         16.59
0.290322580645161
                           18.95
                                                       18.39
                                     18.91
                                              18.73
                                                                18.15
                                                       18.01
17.93
                                                                17.82
17.67
0.32258064516129
                           18.57
                                     18.52
                                             18.3
                                                                         16.15
0.354838709677419
                           18.5
                                     18.45
                                              18.24
                                                                         15.96
0.387096774193548
0.419354838709677
                           18.41
18.3
                                                       17.87
17.76
                                     18.36
                                             18.16
                                                                17.62
                                                                         15.9
                                                                17.56
                                                                         15.82
                                     18.25
                                              18.06
                           17.98
17.91
                                    17.95
17.87
                                             17.77
17.68
                                                       17.4
17.33
                                                                17.18
17.13
0.451612903225806
                                                                         15.54
                                                                         15.52
0.483870967741936
                           17.91
17.8
17.79
17.74
17.64
                                    17.75
17.75
17.7
17.7
17.59
                                                       17.33
17.19
0.516129032258065
                                              17.64
                                                                17.1
                                                                         15.4
                                                                         15.37
0.548387096774194
                                             17.58
                                                                17
0.580645161290323
                                              17.5
                                                       17.16
                                                                16.89
                                                                         15.22
                                             17.39
17.25
                                                                         15.2
0.612903225806452
                                                       17,12
                                                                16.84
                                                                         14.77
14.77
0.645161290322581
                           17.49
                                     17.45
                                                       16.97
                                                                16.78
                           17.1
17.05
0.67741935483871
                                     17.05
                                             16.86
                                                       16.56
                                                                16.36
                                     17.01
                                              16.81
                                                       16.53
                                                                         14.45
0.709677419354839
                           16.77
16.7
0.741935483870968
                                    16.73
                                             16.54
                                                       16.25
                                                                16.06
                                                                         14.41
0.774193548387097
                                     16.65
                                              16.48
                                                       16.19
                                                                15.97
                                                                         14.4
0.806451612903226
0.838709677419355
                                             16.42
14.38
                           16.65
                                     16.6
                                                       16.14
                                                                15.95
                                                                         14.39
                                     14.53
                                                                13.93
                                                                         12,41
                           14.55
                                                       14.11
0.870967741935484
                           13.8
                                     13.76
                                             13.61
                                                       13.33
                                                                13.14
                                                                         11.52
                           12.23
                                              12.06
                                                                         9.866
0.903225806451613
                                     12.2
                                                       11.81
                                                                11.62
                                    9.131
5.719
0.935483870967742
                           9.155
                                              9.074
                                                       8.869
                                                                8.732
                                                                         7.144
                                             5.647
                                                                         3.564
0.967741935483871
                           5.731
                                                       5.486
                                                                5.369
      20.93 20.87 20.621 20.27
                                             20.058 18.225
0.1
                                             Average of yearly averages: 14.9421333333333
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: FLTFAIR
Metfile: w12839.dvf
PRZM scenario: FLavocadoSTD.txt
EXAMS environment file: p
                                    pond298.exv
Chemical Name: Myclobutanil total
                  Variable Name Value
nt mwt 288.8
                                             Units Comments
Description
Molecular weight
                                             g/mol
                                             atm-m^3/mol
Henry's Law Const.
Vapor Pressure vapr
                           henry
Solubility sol
Kd Kd 0.719
                           142
                                    mg/L
                           mg/L
Koc Koc
Photolysis half-life
                           ma/L
```

days

630

315

cm

APPEFF 0.95

kg/ha

days

days

davs

days

Half-life

kbacw

kbacs

asm

days integer See PRZM manual

0.28

1-3 14

14 kg/ha

14 kg/ha

14

14

kg/ha

kg/ha

kdp

DEPI

TAPP

Date

DRFT 0.05

apprate 0.28

apprate 0.28

apprate 0.28

apprate 0.28

interval

interval

interval

interval

interval

Aerobic Aquatic Metabolism Anaerobic Aquatic Metabolism

Aerobic Soil Metabolism

Application Efficiency:

Hydrolysis: pH 7 Method: CAM 2

Incorporation Depth:

Application Rate:

Application Date

Spray Drift

Interval 1

Interval 2

Interval 3

app. rate 1

app. rate 2

app. rate 3

app. rate 4
Interval 5

Interval 4

Half-life

fraction

fraction of application rate applied to pond

Halfife

Halfife

Halfife

dd/mm or dd/mmm or dd-mmm or dd-mmm days Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

days

days

days

17.59

17.39

```
apprate 0.28
app. rate 5
                                   kg/ha
Interval 6
                  interval
                                   14
                                            days
                                                     Set to 0 or delete line for single app.
                  apprate 0.28
                                   kg/ha
app. rate 6
Interval 7
                  interval
                                   14
                                            days
                                                     Set to 0 or delete line for single app.
                                   kg/ha
app. rate 7
                  apprate 0.28
Record 17:
                  FILTRA
         IPSCND
        UPTKF
Record 18:
                 PLVKRT
        PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run
                                            EPA Pond
                                   IR
Flag for runoff calc. RUNOFF none
                                            none, monthly or total (average of entire run)
FL Tropical Fruit ground spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAQM = 630 days,
     0.719 mg/L
stored as FLTFGRD.out
Chemical: Myclobutanil total
PRZM environment: FLavocadoSTD.txt
                                           modified Monday, 28 May 2007 at 22:44:32
                         nd298.exv modified Thuday, 29 August 2002 at 16:33:30 modified Tueday, 2 July 2002 at 19:04:28
EXAMS environment: pond298.exv
Metfile: w12839.dvf modified
Water segment concentrations (ppb)
                 96 hr
1.582
                          21 Day 60 Day 90 Day Yearly 1.563 1.516 1.482 0.9316
        1.587
1961
                          2.205
3.195
                                   2.151
3.138
1962
        2.236
                 2.23
                                            2.114
                                                     1.767
                                            3.1
                                                     2.551
                  3.232
1963
        3.241
1964
         3.464
                  3.455
                          3.416
                                   3.349
                                            3.303
                                                     2.918
                                                     2.969
```

3.283

5.622

5.392

5.94

5.2

5.26

4.721

4.769

4.348

3.989

3.687

3.631

7.707

6.345

12.61 9.78

7.692

7.88

6.408

5.857 5.226

4.996

4.478

4.461

4.057

3.831

9.902 7.989

7.936

7.732

6.508

6.419

6.044

5.882

5.638

5.446

5.339 5.289

5.09

4.85

4.986

21 Day 60 Day 90 Day Yearly 13.13 13.1 12.99 12.8

4.239

4.927

5.197

4.83

4.637

4.358

4.249

4.016 3.65

3.374

3.28

5.739

5.917

9.466

9.141

6.825

5.986

5 387

4.855

4.522

4.137

4.019

3.726

9.806 7.967

7.79 7.708

6.444

6.381

6.024

5.935

5.734

5.497

5.359

5.273

5.24

5.04

4.861

4.771

12.61

9.78 7.88

7.707

7.692

6.408

6.345

5.94

5.857

5.622

5.392

5.26

5.226

4 996

4.769

4.721

5.2

9.141 7.182

6.825

5.986

5.917

5.739

5.387

5.197

4.855

4.83

4.637

4.522

4 358

4.249

4.239

3.323

5.734

5.497

6.024

5.24 5.359

4.771 4.861

4.387

4.037

3.726

3.69

7.79

12.8

6.381

9.806 7.708

7.967

6.444

5.935

5.273

5.04

4.518

4.551

4.095

3.877

9.964 8.027

8.005

7,769

6.57

6.467

6.228

6.109

5.946

5.694

5.501

5.395

5.331

5.145

5.038

4.897

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1980

1981 1982

1983

1984

1985

1986

1987

1988

1989

1990

3.427

5.962

5.705

6.244

5.345

5.516

4 909

5.048

4.498

4.173

3.835

8.029

6.485

13.13

9.978

7.79 8.047

6.588

6.125

5.409

5.159

4.678

4.739

4.204

3.991

0.0645161290322581 0.0967741935483871

0.129032258064516

0.161290322580645

0.193548387096774

0.225806451612903

0.258064516129032

0 290322580645161

0.32258064516129

0.354838709677419

0.387096774193548

0.419354838709677

0.451612903225806

0.483870967741936

0.516129032258065

0.548387096774194

Sorted results Prob. Peak 96 0.032258064516129

3.81

3.418

5.946

5.694

6.228

5.331

5.501

4.897

5.038

4.487

4.162

3.825

8.005

6.467

9.964 7.769

8.027

6.109

5.395

5.145

4.664

4.726

4.192

3.98

96 hr

6.57

13.1

3.8

3.386

5.882

5.638

6.163

5.289

5.446

4.85 4.986

4.438

4.115 3.783 3.76 7.936

6.419

12.99

9.902 7.732

7.989

6.508

6.044

5.339

4.607

4.674

4.146

3.937

9.978 8.047

8.029 7.79

6.588

6.485

6.244

6.125

5.962

5.705

5.516

5.409

5.345

5.159

5.048

4.909

5.09

```
4.674
0.580645161290323
                           4.739
                                    4.726
                                                      4.551
                                                               4.478
                                                                       4.137
0.612903225806452
0.645161290322581
                           4.678
                                    4.664
                                             4.607
                                                      4.518
                                                               4.461
                                                                       4.019
                                             4.438
                                                      4.387
                           4.498
                                    4.487
                                                               4.348
                                                                        4.016
0.67741935483871
                            4.204
                                    4.192
                                             4.146
                                                      4.095
                                                               4.057
0.709677419354839
                           4.173
                                    4.162
                                             4.115
                                                      4.037
                                                               3.989
                                                                       3.65
0.741935483870968
                           3.991
                                    3.98
                                             3.937
                                                      3.877
                                                               3.831
                                                                        3.477
0.774193548387097
                           3.835
                                    3.825
                                             3.783
                                                      3.726
                                                               3.687
                                                                       3.374
0.806451612903226
                           3.81
                                    3.8
                                                      3.69
                                                               3.631
                                    3.455
3.418
                                             3.416
                                                      3.349
0.838709677419355
                           3.464
                                                               3.303
                                                                       2.969
0.870967741935484
                           3.427
                                             3.386
                                                      3.323
                                                               3.283
                                                                        2.918
                                    3.232
                                                      3.138
2.151
                                                                       2.551
1.767
0.903225806451613
                           3.241
                                             3.195
                                                               3.1
                           2.236
                                             2.205
                                    1.582
0.967741935483871
                           1.587
                                             1.563
                                                      1.516
                                                              1.482
                                                                       0.9316
         8.0452 8.0248 7.9837 7.9493 7.8627 7.1463
0.1
                                             Average of yearly averages:
                                                                              4.60908666666667
Inputs generated by pe5.pl - November 2006
Data used for this run:
Output File: FLTFGRD
Metfile:
                 w12839.dvf
PRZM scenario: FLavocadoSTD.txt
EXAMS environment file: pond298.exv
Chemical Name: Myclobutanil total
Description
                  Variable Name
                                    Value
                                             Units
                                                      Comments
Molecular weight
                                    288.8
                                            g/mol
                           mwt
Henry's Law Const.
Vapor Pressure vapr
                           henry
                                             atm-m^3/mol
                                    torr
                sol 142
0.719 mg/L
Solubility
Kd Kd
                                    mg/L
Koc Koc
Photolysis half-life
                           mg/L
                                                      Half-life
                           kdp
                                             days
Aerobic Aquatic Metabolism
                                    kbacw
                                             630
                                                      days
                                                              Halfife
Anaerobic Aquatic Metabolism
                                    kbacs
                                                      davs
                                                              Halfife
Aerobic Soil Metabolism
                                                      days
                                             315
                                                              Halfife
                                    asm
                рН 7
2
                                             Half-life
Hvdrolvsis:
                                    days
Method: CAM
                           integer See PRZM manual
Incorporation Depth:
                          DEPI
                                             CIU
                                             kg/ha
Application Rate:
                           TAPP
                                    0.28
                                    APPEFF 0.99 fraction fraction of application rate applied to pond
Application Efficiency:
                                    APPEFF
Spray Drift DR
Application Date
                  DRFT
                           0.01
                                             dd/mm or dd/mmm or dd-mm or dd-mmm days Set to 0 or delete line for single app.
                           Date
                                    1-3
                  interval
Interval 1
app. rate 1
                  apprate 0.28
                                    kg/ha
Interval 2
                  interval
                                                     Set to 0 or delete line for single app.
                                            days
                                    14
                  apprate 0.28
                                   kg/ha
app. rate 2
Interval 3
                                                    Set to 0 or delete line for single app.
                  interval
                                    14
                                             days
app. rate 3
Interval 4
                  apprate 0.28
                                    kg/ha
                                                    Set to 0 or delete line for single app.
                  interval
                                             days
                                    14
app. rate 4
Interval 5
                  apprate 0.28
                                    kg/ha
                  interval
                                    14
                                             davs
                                                    Set to 0 or delete line for single app.
                  apprate 0.28
app. rate
           5
                                    kg/ha
Interval 6
                  interval
                                    14
                                             days
                                                    Set to 0 or delete line for single app.
app. rate 6
Interval 7
                  apprate 0.28
                                    kg/ha
                  interval
                                    14
                                             davs
                                                     Set to 0 or delete line for single app.
app. rate 7
                  apprate 0.28
                                   kg/ha
Record 17:
                  FILTRA
         IPSCND
         UPTKF
Record 18:
                 PLVKRT
         PLOKET
         FEXTRC 0.5
Flag for Index Res. Run
                                   IR
                                             EPA Pond
Flag for runoff calc. RUNOFF none
                                            none, monthly or total (average of entire run)
LA Tropical Fruit aerial spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAQM = 630 days, Kd = 0.719 mg/L
stored as LATFAIR.out
Chemical: Myclobutanil total
PRZM environment: LAsugarcaneSTD.txt modified Monday, 28 May 2007 at 22:56:00
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w13970.dvf modified Wedday, 3 July 2002 at 09:05:36
Water segment concentrations (ppb)
```

```
42.25
                                       41.66
98.32
          42,64
                    42.53
1961
                                                 41.06
                                                          28.84
1962
          102
                    102
                             101
                                                 96.29
                                                           73.46
1963
          83.85
                    83.66
                             83.28
                                       82.41
                                                 82.23
                                                          78.64
          109
                    109
                              108
                                       107
                                                 107
1964
                                                          94.24
                   116
123
                             115
123
                                                 113
122
1965
          117
                                       115
                                                          105
1966
          124
                                       122
                                                          111
1967
          200
                    199
                             198
                                       196
                                                 195
                                                          160
                              171
          172
1968
                    172
                                       170
                                                 169
                                                          160
1969
1970
                                       176
187
                                                 175
185
                                                          162
170
          182
                    181
                             180
          189
                    189
                             188
                             176
188
1971
          178
                    177
                                       174
                                                 172
                                                          161
                                       186
1972
          190
                    190
                                                 184
                                                          163
1973
          197
                    196
                             195
                                       193
                                                 192
                                                          172
1974
          175
                    174
                             173
                                       173
                                                 172
                                                          161
          187
                    187
                             186
                                       184
                                                 183
                                                          165
1976
1977
                   192
191
          193
                             191
                                       190
                                                 187
                                                          169
                                                184
174
          191
                             190
                                                          170
                                       186
                                                          161
171
1978
          178
                    177
                             177
                                       175
                    192
                             190
                                                 187
1979
          192
                                       188
1980
          243
                   242
                             240
                                       233
                                                 232
                                                          203
                    212
                                       207
                                                 206
1981
          213
                             210
                                                          195
                                                          171
177
1982
          185
                    185
                             184
                                       183
                                                 181
                                                 196
1983
          203
                   203
                             202
                                       198
1984
          180
                    180
                             179
                                       177
                                                 176
                                                          167
                                                159
1985
          165
                   164
                             162
                                       160
                                                          151
                    170
                                                          147
          171
1987
          167
                   167
                             166
                                       165
                                                 164
                                                          151
1988
          164
                   164
                             163
                                       160
                                                 159
                                                          148
                   181
167
1989
          182
                             180
                                       177
                                                175
                                                          156
1990
                                       165
                                                 165
                                                          155
          168
                             166
Sorted results
Prob. Peak 96
0.032258064516129
                             21 Day
243
                                       60 Day
                                                90 Day
                                                          Yearly
233
                   96 hr
                                       242
                                                240
                                                                    232
                                                                             203
0.0645161290322581
0.0967741935483871
                             213
                                       212
                                                210
                                                          207
                                                                    206
                                                                             195
                             203
                                                202
                                                                    196
                                                                             177
                                       203
                                                          198
                                                                    195
0.129032258064516
                             200
                                       199
                                                198
                                                          196
0.161290322580645
                             197
                                       196
                                                195
                                                          193
                                                                    192
                                                                             171
0.193548387096774
                             193
                                       192
                                                191
                                                          190
                                                                    187
                                                                             171
0.225806451612903
                             192
                                       192
                                                190
                                                          188
                                                                    187
                                                                             170
0.258064516129032
                                       191
                             191
                                                190
                                                          187
                                                                    185
                                                                             170
0.290322580645161
0.32258064516129
                             190
                                       190
                                                188
                                                          186
                                                                    184
                                                                             169
                             189
                                       189
                                                188
                                                          186
                                                                    184
                                                                             167
0.354838709677419
0.387096774193548
                             187
                                       187
                                                186
                                                          184
                                                                    183
                                                                             165
                             185
                                       185
                                                184
                                                          183
                                                                    181
                                                                             163
0.419354838709677
0.451612903225806
                                                          177
177
                             182
                                       181
                                                180
                                                                    176
                                                                             162
                                                180
                                                                    175
                             182
                                       181
                                                                             161
0.483870967741936
0.516129032258065
                             180
                                       180
                                                179
                                                          176
                                                                    175
                                                                             161
                                      177
177
174
                             178
                                                177
                                                          175
                                                                   174
                                                                             161
                             178
175
                                                          174
173
0.548387096774194
                                                176
                                                                    172
                                                                   172
0.580645161290323
                                                173
                                                                             160
0.612903225806452
                             172
                                       172
                                                171
                                                          170
                                                                    169
                                                                             156
0.645161290322581
0.67741935483871
                             171
                                      170
                                                169
                                                          167
                                                                   165
                                                                             155
                             168
                                       167
                                                166
                                                          165
                                                                    164
                                                                             151
0.709677419354839
0.741935483870968
                             167
165
                                      167
                                                166
                                                          165
                                                                    164
                                                                             151
                                      164
                                                163
                                                          160
                                                                    159
                                                                             148
0.774193548387097
                             164
                                       164
                                                162
                                                          160
                                                                    159
                                                                             147
0.806451612903226
                                       123
                             124
                                                123
                                                          122
                                                                    122
                                                                             111
0.870967741935484
                             109
                                      109
                                                108
                                                          107
                                                                    107
                                                                             94.24
0.903225806451613
                             102
                                       102
                                                101
                                                          98.32
                                                                    96.29
                                                                             78.64
0.935483870967742
                             83.85
                                       83.66
                                                83.28
                                                          82.41
                                                                    82.23
                                                                             73.46
                             42.64
                                       42.53
0.967741935483871
                                                42.25
                                                          41.66
                                                                    41.06
                                                                             28.84
0.1
         202.7 202.6
                            201.6
                                      197.8
                                                195.9
                                                          176.5
                                                Average of yearly averages:
                                                                                      148.572666666667
```

Inputs generated by pe5.pl - Novemeber 2006

96 hr

21 Day

60 Day

90 Day

Yearly

Data used for this run: Output File: LATFAIR Metfile: w1397 Metfile: w13970.dvf
PRZM scenario: LAsugarcaneSTD.txt

EXAMS environment file:

pond298.exv

```
Chemical Name: Myclobutanil total
Description Va
Molecular weight
                 Variable Name
                                   Value
                                           Units
                                                   Comments
                                            g/mol
Henry's Law Const.
Vapor Pressure vapr
                          henry
                                            atm-m^3/mol
                                   torr
Solubility
Kd Kd
                 sol
                          142
                                   mg/L
                 0.719
                          mg/L
Koc Koc
Photolysis half-life
                          mg/L
                                                    Half-life
                                            days
                          kdp
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                   kbacw
                                            630
                                                    days
                                                             Halfife
                                                             Halfife
                                   kbacs
                                                    days
Aerobic Soil Metabolism
                                   asm
                                            315
                                                     days
                                                             Halfife
                                            Half-life
                рн 7
2
Hydrolysis:
                                   days
Method: CAM
                          integer See PRZM manual
Incorporation Depth: Application Rate:
                          DEPI
                                           cm
                          TAPP
                                   0.28
                                            kg/ha
Application Efficiency:
Spray Drift DRFT 0.05
                                           0.95
                                   APPEFF
                                                    fraction
                                   fraction of application rate applied to pond
                                           dd/mm or dd/mmm or dd-mmm or dd-mmm days Set to 0 or delete line for single app.
Application Date
                          Date
                                   1-3
Interval 1
                                   14
                 interval
                                   kg/ha
14
app. rate 1
                 apprate 0.28
Interval 2
                                                    Set to 0 or delete line for single app.
                                           days
                 interval
                                   kg/ha
app. rate 2
                 apprate 0.28
                                                    Set to 0 or delete line for single app.
Interval 3
                                   14
                                           days
                 interval
                 apprate 0.28
                                   kg/ha
app. rate
           3
Interval 4
                                                    Set to 0 or delete line for single app.
                 interval
                                   14
                                           days
app. rate 4
Interval 5
                 apprate 0.28
                                   kg/ha
                                           davs
                                                    Set to 0 or delete line for single app.
                 interval
                                   14
                 apprate 0.28
                                   kg/ha
app. rate 5
Interval 6
                                                    Set to 0 or delete line for single app.
                 interval
                                   14
                                           days
app. rate
Interval 7
           6
                 apprate 0.28
                                   kg/ha
                                                    Set to 0 or delete line for single app.
                 interval
                                   14
                                           davs
app. rate 7
                 apprate 0.28
                                   kg/ha
Record 17:
                 FILTRA
        IPSCND
        UPTKF
                 PLVKRT
Record 18:
        PLDKRT
        FEXTRC
                0.5
Flag for Index Res. Run
                                   TR
                                           EPA Pond
Flag for runoff calc. RUNOFF none
                                           none, monthly or total (average of entire run)
```

LA Tropical Fruit ground spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L

stored as LATFGRD.out
Chemical: Myclobutanil total
PRZM environment: LAsugarcaneSTD.txt modified Monday, 28 May 2007 at 22:56:00
EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30
Metfile: w13970.dvf modified Wedday, 3 July 2002 at 09:05:36
Water segment concentrations (ppb)

Year 1961 1962 1963 1964 1965 1966	Peak 40.04 98.55 80.4 102 108 115	96 hr 39.94 98.38 80.35 102 108 115	21 Day 39.69 97.49 80.13 102 107 114	60 Day 39.14 94.99 79.6 99.99 107 113 189	90 Day 38.59 93.03 79.14 100 105 113.	Yearly 27.17 70.5 73.61 88.11 97.83 103 154
1968	164	163	163	162	162	153
1969	174	173	172	168	167	155
1970	181	181	180	179	177	162
1971	169	168	167	165	163	153
1972	182	181	180	177	175	155
1973	189	189	187	185	184	164
1974	166	165	164	164	163	153
1975	178	178	177	17 5	174	157
1976	184	184	183	181	178	160
1977	183	183	181	177	175	161
1978	169	168	167	165	164	152
1979	183	183	181	179	178	162
1980	236	235	233	227	224	196
1981	204	204	202	199	197	188
1982	176	176	174	173	172	163

```
170
154
                             169
152
1984
                    170
                                       167
                                                 166
                                                          158
1985
                    154
                                       149
                                                 148
                                                          141
                                       157
155
                                                 154
154
1986
          161
                    160
                              159
                                                          138
1987
          158
                    157
                             156
                                                          142
          154
172
 1988
                    154
                              152
                                       150
                                                 149
                                                           139
                              170
                                       167
1989
                    172
                                                 166
                                                           147
                              156
                                                           146
Sorted results
                                                 90 Day
                                                          Yearly
Prob.
          Peak
                   96 hr
                             21 Day
                                       60 Day
                             236
0.032258064516129
                                       235
                                                 233
                                                          227
                                                                              196
\begin{array}{c} 0.0645161290322581 \\ 0.0967741935483871 \end{array}
                             204
195
                                       204
                                                 202
                                                          199
                                                                    197
                                                                              188
                                       194
                                                 193
                                                           190
                                                                    188
                                                                              169
0.129032258064516
0.161290322580645
                             193
                                       193
                                                 191
                                                          189
                                                                    187
                                                                              164
                                       189
                              189
                                                 187
                                                          185
                                                                    184
                                                                              163
0.193548387096774
                              184
                                       184
                                                 183
                                                           181
                                                                    178
                                                                              162
0.225806451612903
                                                                    178
                             183
                                       183
                                                 181
                                                          179
                                                                              162
                                                                    177
175
0.258064516129032
                              183
                                       183
                                                 181
                                                          179
                                                                              161
0.290322580645161
                                                          177
                             182
                                       181
                                                 180
                                                                              160
0.32258064516129
                                       181
0.354838709677419
                             178
176
                                                                    174
                                       178
                                                 177
                                                          175
                                                                              157
0.387096774193548
                                       176
                                                 174
                                                          173
                                                                    172
                                                                              155
                             174
172
                                       173
172
                                                 172
170
0.419354838709677
                                                          168
                                                                    167
                                                                              155
0.451612903225806
                                                          167
                                                                              154
                                                                    166
0.483870967741936
0.516129032258065
                                       170
168
                                                 169
167
                             170
                                                          167
                                                                    166
                                                                             153
                                                                             153
                             169
                                                          165
                                                                    164
0.548387096774194
0.580645161290323
                             169
                                       168
                                                 167
                                                          165
                                                                    163
                                                                              153
                             166
                                       165
                                                 164
                                                          164
                                                                    163
                                                                             152
0.612903225806452
                             164
                                       163
                                                 163
                                                                    162
                                                                              147
0.645161290322581
                             161
                                       160
                                                 159
                                                          157
                                                                    155
                                                                             146
0.67741935483871
                             158
                                                                              142
                                       158
                                                                             141
139
0.709677419354839
                             158
                                       157
                                                 156
                                                          155
                                                                    154
0.741935483870968
                             154
                                       154
                                                 152
                                                          150
                                                                    149
                             154
115
                                       154
115
0.774193548387097
                                                 152
                                                          149
                                                                    148
                                                                             138
                                                 114
0.806451612903226
                                                          113
                                                                              103
                                                                    113
                                                                             97.83
88.11
0.838709677419355
                             108
                                       108
                                                 107
                                                          107
                                                                    105
0.870967741935484
                             102
                                                 102
                                       102
                                                          99.99
                                                                    100
                             98.55
80.4
                                       98.38
80.35
                                                97.49
80.13
                                                          94.99
79.6
                                                                    93.03
79.14
                                                                             73.61
70.5
0.903225806451613
0.935483870967742
0.967741935483871
                             40.04
                                       39.94
                                                 39.69
                                                          39.14
                                                                    38.59
                                                                             27.17
0.1
         194.8 193.9
                             192.8
                                       189.9
                                                187.9
                                                          168.5
                                                Average of yearly averages:
                                                                                       140.940666666667
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: LATFGRD
Metfile: w13970.dvf
PRZM scenario: LAsugarcaneSTD.txt
EXAMS environment file: pone
Chemical Name: Myclobutanil total
                                      pond298.exv
Description
                   Variable Name
                                       Value
                                                Units
                                                          Comments
Molecular weight
                             mwt
                                       288.8
                                                q/mol
Henry's Law Const.
Vapor Pressure vapr
                                                atm-m^3/mol
                                       torr
Solubility
Kd Kd
Koc Koc
                   sol
0.719
                             142
                                       mg/L
```

Half-life

fraction

fraction of application rate applied to pond 1-3 dd/mm or dd/mmm or dd-mm or dd-mmm

days

days

days

Halfife

Halfife

Halfife

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

1983

Koc

Hydrolysis:

Method: CAM

Interval 1

Interval 2

Interval 3

app. rate 1

app. rate 2

Photolysis half-life kdp Aerobic Aquatic Metabolism

Incorporation Depth:

Application Rate:

Spray Drift DF Application Date

Anaerobic Aquatic Metabolism Aerobic Soil Metabolism

Application Efficiency:
Spray Drift DRFT 0.01

рн 7 2

DRFT

interval

interval

interval

apprate 0.28

apprate 0.28

193

mg/L mg/L

DEPI

TAPP

Date

kbacw

kbacs

asm

days

0.28

14

14

kg/ha

kg/ha

APPEFF

integer See PRZM manual

630

315

cm kg/ha 0.99

days

days

days

Half-life

```
app. rate 3
                apprate 0.28
                               kg/ha
Interval 4
                interval
                               14
                                       days
                                             Set to 0 or delete line for single app.
app. rate 4
                apprate 0.28
                               kg/ha
                               14
kg/ha
Interval 5
                interval
                                       days
                                               Set to 0 or delete line for single app.
app. rate 5
                apprate 0.28
                               14
kg/ha
Interval 6
                interval
                                       days
                                               Set to 0 or delete line for single app.
app. rate 6
Interval 7
                apprate 0.28
                interval
                               14
                                       days
                                               Set to 0 or delete line for single app.
                               kg/ha
app. rate 7
                apprate 0.28
Record 17:
     IPSCND
       UPTKF
Record 18:
               PLVKRT
      PLDKRT
FEXTRC 0.5
Flag for Index Res. Run
                                       EPA Pond
                               IR
Flag for runoff calc. RUNOFF none
                                       none, monthly or total (average of entire run)
```

PR Tropical Fruit aerial spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAQM = 630 days, Kd = 0.719 mg/L

stored as PRTFAIR.out Chemical: Myclobutanil total PRZM environment: PRcoffeeSTD.txt modified Wedday, 22 February 2006 at 20:50:14 EXAMS environment: pond298.exv modified Thuday, 29 August 2002 at 16:33:30 Metfile: w11641.dvf modified Tueday, 2 July 2002 at 19:06:16 Water segment concentrations (ppb)

Year 1961	11.98	96 hr 11.95	11.86	60 Day 11.63	11.51	8.084		
1962		20.38						
1963		29.8	29.65	29.03	28.58	23.84		
1964	31.38	31.3	31.13	30.55	30.23	26.44		
1965	39.36		38.94	38.01	37.35	31.12	•	
1966	55.26	55.12	54.88	54.2	53.41	44.32		
1967	47.72		47.16			42.01		
1968		42.68		41.69				
1969				53.78				
1970	66.13	65.96		64.89				
1971	59.5	59.34	58.68	57.15	56.03	51.29		
1972	52.8	52.67 64.03	52.39	52.13	51.7	46.07		
1973	64.2	48.59	63.57	47.00	47.92	24.72		
1974 1975		48.59						
1975		58.46						
1977				61.73				
1978	65 54	63.85	64 00			54.95		
1979	65.54 62.13	61 96	64.99	59.7		52.42		
1980	54 63	54.5	53.96	52 73		46.94		
1981	55.01	54.86	54.55	53.44	52.51	46.25		
1982		60.94		58.77				
1983		78.74						
1984	57.68	57.56	57.04	56.69				
1985	59.56	59.44	58.85	57.39	56.26			
1986	80.23	80.02	79.14	57.39 77.12	75.59	61.84		
1987	116	80.02 116	115	112	110	90.54		
1988		143	141		137	112		
1989		110		108		100		
1990	84.8	84.58	83.81	82.69	82.02	76.88		
Sorted								
Prob.		96 hr		60 Day				
	80645163		143	143	141	138	137	11
	6129032		116	116	115	112	110	10
		3871		110		108	108	90
	2258064			84.58		82.69		76
	0322580		80.23			77.12	75.59	61
0.19354	8387096	774	78.97	78.74	7.7.8	76.22	75.19	61

12 00 0.54 6.88 1.84 61.51 54.95 78.97 66.13 65.54 64.2 64 62.13 65.96 65.37 64.03 0.225806451612903 65.28 64.89 63.95 63.64 62.65 61.73 59.7 64.99 63.57 62.44 61.86 52.82 52.77 0.258064516129032 0.290322580645161 0.32258064516129 0.354838709677419 63.85 63.26 61.96 61.29 60.58 52.72

```
58.77
57.39
0.387096774193548
                         61.01
                                  60.94
                                           60.32
                                                           57.6
                                                                   51.59
                                                           56.66
                                           58.85
                                                                   51.29
                          59.56
                                  59.44
0.419354838709677
0.451612903225806
                          59.5
                                  59.34
                                           58.68
                                                   57.15
                                                           56.26
                                                                    49.19
                                                           56.03
                         58.62
0.483870967741936
                                  58.46
                                           57.81
                                                   56.69
                                                                    48.99
                                                           55.98
53.41
0.516129032258065
                          57.68
                                  57.56
                                           57.04
                                                   56.52
                                                                    46.94
0.548387096774194
                         55.26
                                  55.12
                                           54.88
                                                   54.2
                                                                    46.25
0.580645161290323
                                  55.01
                                           54.57
                                                   53.78
                                                           52.88
                                                                    46.07
0.612903225806452
                         55.01
                                  54.86
                                          54.55
                                                   53.44
                                                           52.51
                                                                    45.7
0.645161290322581
                          54.63
                                           53.96
                                                   52.73
                                                           52.21
                                                                    45.52
0.67741935483871
                         52.8
                                  52.67
                                          52.39
                                                   52.13
                                                           51.7
                                                                    44.47
0.709677419354839
                          48.67
                                  48.59
                                           48.13
                                                   47.9
                                                            47.92
                         47.72
42.78
0.741935483870968
                                  47.63
                                          47.16
                                                   46.42
                                                           45.71
                                                                    42.01
                                  42.68
                                           42.44
                                                           40.97
                                                                    37.08
0.774193548387097
                                                   41.69
0.806451612903226
                          41.25
                                  41.13
                                           40.79
                                                   40.01
                                                           39.34
                                                                    36.66
                          39.36
                                          38.94
                                                   38.01
                                                           37.35
0.838709677419355
                                  39.27
                                                                    31.12
0.870967741935484
                          31.38
                                  31.3
                                           31.13
                                                   30.55
                                                           30.23
                                                                    26.44
                                                                   23.84
0.903225806451613
                         29.88
                                  29.8
                                          29.65
                                                   29.03
                                                           28.58
                                  20.38
                                           20.21
                                                   19.86
0.935483870967742
0.967741935483871
                         11.98
                                 11.95
                                          11.86
                                                   11.63
                                                           11.51
                                                                   8.084
0.1
      107.48 107.458 107.381 105.469 105.402 89.174
                                          Average of yearly averages:
                                                                          50.3381333333333
Inputs generated by pe5.pl - Novemeber 2006
Data used for this run:
Output File: PRTFAIR
Metfile: w11641.dvf
PRZM scenario: PRcoffeeSTD.txt
Metfile:
                                 pond298.exv
EXAMS environment file:
Chemical Name: Myclobutanil total
                                          Units Comments
Description
                Variable Name Value
Molecular weight
                                 288.8
                                          g/mol
Henry's Law Const.
Vapor Pressure vapr
                                          atm-m^3/mol
                         henry
                                  torr
Solubility sol
Kd Kd 0.7
Koc Koc
                         142
                                 mg/L
                0.719 mg/L
                         mg/L
                         kdp
Photolysis half-life
                                                   Half-life
                                          days
Aerobic Aquatic Metabolism
Anaerobic Aquatic Metabolism
                                                           Halfife
                                  kbacw
                                          630
                                                   days
                                                   days
                                                           Halfife
                                 kbacs
                                                   days
                                                           Halfife
Aerobic Soil Metabolism
                                  asm
                                          315
Hydrolysis:
               рН 7
2,
                                          Half-life
                                  davs
Method: CAM
                         integer See PRZM manual
Incorporation Depth:
Application Rate:
                         DEPT
                                          CM
                                 0.28
                         TAPP
                                          kg/ha
Application Efficiency:
Spray Drift DRFT 0.05
Application Date
                                 APPEFF
                                         0.95
                                                   fraction
                                  fraction of application rate applied to pond
                                          dd/mm or dd/mmm or dd-mm or dd-mmm days Set to 0 or delete line for single app.
                         Date
Application Date
                                 1-2
                                  14
                interval
Interval 1
app. rate 1
                 apprate 0.28
                                 kg/ha
Interval 2
                                                  Set to 0 or delete line for single app.
                                          days
                interval
                                 14
                 apprate 0.28
app. rate 2
                                  kg/ha
                                          days
Interval 3
                                                  Set to 0 or delete line for single app.
                interval
                                 14
app. rate 3
                 apprate 0.28
                                  kg/ha
Interval 4
                interval
                                 14
                                          days
                                                  Set to 0 or delete line for single app.
                 apprate 0.28
app. rate 4
                                  kg/ha
Interval 5
                 interval
                                 14
                                          days
                                                  Set to 0 or delete line for single app.
                 apprate 0.28
                                  kg/ha
app. rate 5
```

IPSCND UPTKF

Interval 6

app. rate 6 Interval 7

app. rate 7

Record 17:

Record 18: PLVKRT PLDKRT

FEXTRC 0.5

Flag for Index Res. Run

EPA Pond

interval

interval

FILTRA

apprate 0.28

apprate 0.28

14

14

kg/ha

kg/ha

Flag for runoff calc. RUNOFF none none, monthly or total (average of entire run)

days

days

PR Tropical Fruit ground spray myclobutanil plus 1,2,4-triazole ASM = 315 days, AAqM = 630 days, Kd = 0.719 mg/L

Set to 0 or delete line for single app.

Set to 0 or delete line for single app.

stored as PRTFGRD.out Chemical: Myclobutanil total offeeSTD.txt modified Wedday, 22 February 2006 at 20:50: nd298.exv modified Thuday, 29 August 2002 at 16:33:30 modified Tueday, 2 July 2002 at 19:06:16 PRZM environment: PRcoffeeSTD.txt 2006 at 20:50:14 EXAMS environment: pond298.exv Metfile: w11641.dvf modified Water segment concentrations (ppb) Year Peak 96 hr 21 Day 60 Day 90 Day Yearly 1961 8.239 8.222 8.171 7.974 7.86 5.374 14.09 22.11 14.06 22.05 13.95 21.9 13.67 21.45 13.48 21.08 11.04 17.3 1962 1963 22.51 29.92 22.38 21.67 28.39 1964 22.56 21.99 18.93 29.65 1965 29.98 28.94 23.05 46.36 37.86 46.24 37.8 45.82 37.42 1966 45.25 44.56 36.33 36.21 36.8 33.59 1967 32.22 44.79 1968 32.44 32.36 31.65 31.12 28.23 1969 45.26 44.09 43.37 36.86 45.14 1970 56.68 56.61 55.57 54.79

56 49.07 49.76 43.68 49.63 43.58 42.86 1971 46.86 47.8 1972 43.29 42.72 42.22 37.52 1973 55.1 54.99 54.45 53.46 52.81 44.56 41 40.91 39.82 31.08 48.76 30.86 48.21 31.17 27.84 1975 30.35 29.88 48.89 47.12 1976 46.59 37.18 1977 54.66 54.52 53.99 52.69 51.71 43.27 55.95 1978 55.81 55.54 53.42 46.76 54.44 52.33 44.85 49.44 42.76 1979 52.47 51.77 50.41 44.16 1980 44.35 43.3 38.57 44.95 1981 45.36 45.25 45.02 44.09 43.34 38.04 50.97 69.26 51.57 70.31 49.65 67.82 1982 51.49 48.65 40.84 1983 70.1 66.91 53.93 50.74 50.12 1984 51.31 51.2 49.69 44.8 49.96 49.85 49.34 47.18 40.87 1986 71,25 71.06 70.28 68.46 67.1 53.88 109 109 108 105 103 83.78 1988 137 137 135 132 131 107 105 104 105 102 102 1990 78.15 77.99 77.31 75.96 75.36 69.55

Sorted results 21 Day 60 Day 90 Day Yearly 0.032258064516129 131 137 109 137 109 135 108 132 107 93.97 0.0645161290322581 105 103 105 77.99 71.06 70.1 104 77.31 70.28 0.0967741935483871 105 102 102 83.78 0.129032258064516 75.36 67.1 78.15 75.96 69.55 0.161290322580645 71.25 68.46 53.93 0.193548387096774 69.26 70.31 67.82 66.91 53.88 0.225806451612903 56.61 56.68 0.258064516129032 0.290322580645161 55.54 55.95 55.81 54.44 53.42 44.8 55.1 54.99 54.45 53.46 52.81 54.66 52.47 54.52 52.33 53.99 51.77 52.69 50.41 51.71 49.69 0.32258064516129 44.4 0.354838709677419 44.16 0.387096774193548 0.419354838709677 51.57 51.31 51.49 51.2 50.97 50.74 43.27 42.86 50.12 49.44 48.65 49.65 0.451612903225806 0.483870967741936 49.96 49.85 49.34 48,11 47.18 40.87 47.8 46.86 49.76 49.63 49.07 40.84 0.516129032258065 48.89 48.76 48.21 47.12 46.59 38.57 46.24 0.548387096774194 46.36 45.82 45.25 44.56 38.04 0.580645161290323 45.36 45.25 45.02 44.09 45.26 44.95 43.34 42.76 0.612903225806452 45.14 44.79 44.09 37.18 43.3 42.72 39.82 0.645161290322581 44.85 44.35 36.86 43.58 40.91 0.67741935483871 43.68 43.29 42.22 36.33 0.709677419354839 40.54 39.71 41 36 0.741935483870968 0.774193548387097 37.86 37.8 32.36 37.42 32.22 36.8 36.21 33 59 32.44 31.65 31.12 28.23 0.806451612903226 31.17 31.08 30.86 30.35 29.88 27.84 0.838709677419355 29.98 29.65 28.94 28.39 23.05 29.92 22.51 22.05 0.870967741935484 22.56 22.38 21.99 21.67 18.93 21.08 21.9 0.903225806451613 22.11 21.45 17.3 13.67 7.974 11.04 0.935483870967742 14.09 14.06 13.95 13.48 8.239 8.222 8,171 7.86 0.967741935483871 5.374

0.1 102.315 102.299 101.331 99.396 99.336 82.357 Average of yearly averages: 42.6828

Inputs generated by pe5.pl - Novemeber 2006

```
Data used for this run:
Output File: PRTFGRD
Metfile: w11641.dvf
PRZM scenario: PRcoffeeSTD.txt
EXAMS environment file: pond298.exv
Chemical Name: Myclobutanil total
Description
                 Variable Name
                                   Value
                                            Units
                                                    Comments
Molecular weight
                                            g/mol
                          mwt
                                   288.8
Henry's Law Const.
                                            atm-m^3/mol
Vapor Pressure vapr
                                   torr
Solubility
                          142
                 sol
                                   mg/L
Kd
      Kd
                  0.719
                         mg/L
        Koc
Koc
                          mg/L
Photolysis half-life kdp
Aerobic Aquatic Metabolism
                                            days
630
                                                    Half-life
                                   kbacw
                                                    days
Anaerobic Aquatic Metabolism
Aerobic Soil Metabolism
                                   kbacs
                                                    days
                                                             Halfife
                                                    days
                                                             Halfife
                                   asm
                 рн 7
2
Hydrolysis:
                                   days
                                            Half-life
Method: CAM
                          integer See PRZM manual
Incorporation Depth:
                          DEPI
                                   0.28
                                            kg/ha
Application Kate:
Application Efficiency:
Drift DRFT 0.01
                                   APPEFF
                                            0.99
                                                    fraction
                                   fraction of application rate applied to pond
                                   1-2
14
                                            dd/mm or dd/mmm or dd-mmm days Set to 0 or delete line for single app.
Application Date
                          Date
                 interval
Interval 1
                                            days
app. rate 1
Interval 2
                  apprate 0.28
                                   kg/ha
                                                    Set to 0 or delete line for single app.
                 interval
                                   14
                                            days
app. rate 2
                 apprate 0.28
                                   kg/ha
                                                    Set to 0 or delete line for single app.
Interval 3
                 interval
                                   14
                                            davs
app. rate 3
                 apprate 0.28
                                   kg/ha
Interval 4
                 interval
                                   14
                                            days
                                                    Set to 0 or delete line for single app.
                 apprate 0.28
                                   kg/ha
app. rate 4
Interval 5
                 interval
                                   14
                                            days
                                                    Set to 0 or delete line for single app.
app. rate 5
                                   kg/ha
                 apprate 0.28
Interval 6
                 interva1
                                   14
                                            days
                                                    Set to 0 or delete line for single app.
                 apprate 0.28
                                   kg/ha
app. rate 6
Interval 7
                 interval
                                   14
                                            days
                                                    Set to 0 or delete line for single app.
                                   kg/ha
app. rate 7
                 apprate 0.28
Record 17:
                 FILTRA
        IPSCND
        UPTKF
Record 18:
                 PLVKRT
        PLDKRT
        FEXTRC 0.5
Flag for Index Res. Run
                                   IR
                                           EPA Pond
Flag for runoff calc. RUNOFF
                                  none
                                           none, monthly or total (average of entire run)
```

Analysis Summary of Myclobutanil Concentrations in USGS NAWQA Surface Water Monitoring Data

01104615	USGS Station ID	Count		Maximum	Average
01170970 28 0.008 0.008 01184000 11 0.033 0.017090909 01209710 30 0.033 0.00871667 01349150 31 0.033 0.020731034 01357500 23 0.033 0.018869565 01374987 1 0.0398 0.0398 01463500 21 0.033 0.016914266 01463500 12 0.033 0.016914266 01463407 1 0.008 0.008 01493499 2 0.008 0.008 0149349945 1 0.008 0.008 0149349949 2 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008					
01170970 28 0.008 0.008 01184000 11 0.033 0.017090909 01209710 30 0.033 0.00871667 01349150 31 0.033 0.020731034 01357500 23 0.033 0.018869565 01374987 1 0.0398 0.0398 01463500 21 0.033 0.016914266 01463500 12 0.033 0.016914266 01463407 1 0.008 0.008 01493499 2 0.008 0.008 0149349945 1 0.008 0.008 0149349949 2 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008	01104615		11	0.033	0.0163
01184000 11 0.033 0.017090909 01209710 30 0.033 0.009716667 01349150 31 0.033 0.020716129 01357500 23 0.033 0.020731034 01374987 1 0.0398 0.0398 01403300 21 0.033 0.014212 01463500 12 0.033 0.01425 01464907 1 0.008 0.008 01493499 2 0.008 0.008 0149349949 2 0.008 0.008 0149349949 2 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.008 01654000 3 0.033 0.033 0.032 <td></td> <td></td> <td></td> <td></td> <td></td>					
01209710 30 0.033 0.009716667 01349150 31 0.033 0.020716129 01356190 29 0.033 0.020731034 01357500 23 0.033 0.018869565 01374987 1 0.0398 0.0398 01403300 21 0.033 0.01421266 01464907 1 0.008 0.008 01493499 2 0.008 0.008 0149349945 1 0.008 0.008 0149349970 2 0.008 0.008 0149349970 2 0.008 0.008 0149349970 2 0.008 0.008 0149349970 2 0.008 0.008 0149349970 2 0.008 0.008 0149349970 2 0.008 0.008 01610400 1 0.033 0.033 0164580 12 0.033 0.033 02081190 2 0.008 0.008					
01349150 31 0.033 0.020716129 01356190 29 0.033 0.020731034 01357500 23 0.033 0.018869565 01374987 1 0.033 0.016914286 01463500 12 0.033 0.016914286 01463500 12 0.033 0.01425 01489499 2 0.008 0.008 0149349949 2 0.008 0.008 0149349970 2 0.008 0.008 0149349900 2 0.008 0.008 0149349900 2 0.008 0.008 0149349900 2 0.008 0.008 0149349900 2 0.008 0.008 0149349900 2 0.008 0.008 0149349900 2 0.008 0.008 0149349900 2 0.008 0.008 0149349900 2 0.0158 0.0081 016160400 1 0.033 0.0129					
01356190 29 0.033 0.020731034 01357500 23 0.033 0.018869565 01374987 1 0.0398 0.0398 01403300 21 0.033 0.016914286 01463500 12 0.033 0.01425 01489499 2 0.008 0.008 014934994 2 0.008 0.008 0149349949 2 0.008 0.008 0149349980 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.00815 0161040 1 0.033 0.0295 01654000 30 0.033 0.0295 02081190 2 0.008 0.008 02081510 1 0.008 0.008 0208500600 6 0.008 0.008 020850555 6 0.0114 0.008 0.008 0208726975 6 0.014 0.008					
01357500 23 0.033 0.018869565 01374987 1 0.0398 0.0398 01403300 21 0.033 0.016914286 01463500 12 0.033 0.01425 01464907 1 0.008 0.008 0149349945 1 0.008 0.008 0149349970 2 0.008 0.008 0149349970 2 0.008 0.008 0149349970 2 0.008 0.008 01493500 52 0.0158 0.00815 01610400 1 0.033 0.01285 01654000 30 0.033 0.01293 02081510 1 0.008 0.008 02081511 1 0.008 0.008 0208501535 1 0.008 0.008 020852555 6 0.0114 0.00856667 0208726370 6 0.008 0.008 0208726370 6 0.008 0.008				}	
01374987 1 0.0398 0.0398 01403300 21 0.033 0.016914286 01463500 12 0.033 0.01425 01464907 1 0.008 0.008 014934999 2 0.008 0.008 0149349945 1 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.0081 01610400 1 0.033 0.033 0.033 01654000 30 0.033 0.00942333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 020850600 6 0.008 0.008 0208726370 6 0.008 0.008 0208726995 6 0.0114 0.008566667 0208732610 6 0.008 0.008 02087580 13 0.035 0.018607692					
01403300 21 0.033 0.016914286 01463500 12 0.033 0.01425 01464907 1 0.008 0.008 014934994 2 0.008 0.008 0149349949 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.00815 01610400 1 0.033 0.033 01654000 30 0.033 0.033 02081510 1 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 0208725055 6 0.0114 0.00856667 0208725055 6 0.014 0.00856667 0208726995 6 0.008 0.008 0208732610 6 0.008 0.008 02087580 13 0.035 0.01146 <					,
01463500 12 0.033 0.01425 01464907 1 0.008 0.008 01493499 2 0.008 0.008 0149349945 1 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.00815 01610400 1 0.033 0.033 01654000 30 0.033 0.0942333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208726370 6 0.008 0.008 020873615 6 0.008 0.008 02087382610 6 0.008 0.008 0208					
01464907 1 0.008 0.008 01493499 2 0.008 0.008 0149349945 1 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.00815 01610400 1 0.033 0.033 01646580 12 0.033 0.01295 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 020850600 6 0.008 0.008 0208501535 1 0.008 0.008 0208726370 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208732610 6 0.008 0.008 0208732610 6 0.008 0.008 02087580 13 0.035 0.018607692 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
01493499 2 0.008 0.008 0149349945 1 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0168 0.0081 0161040 1 0.033 0.033 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 020850600 6 0.008 0.008 02085430 2 0.008 0.008 0208725055 1 0.008 0.008 0208726970 6 0.008 0.008 0208726995 6 0.008 0.008 0208737075 6 0.008 0.008 0208738610 6 0.008 0.008 02087580 13 0.035 0.018607692 02087580 13 0.035 0.018607692 020					
0149349945 1 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.00815 01610400 1 0.033 0.033 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081510 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208726995 6 0.0098 0.008 0208730725 6 0.008 0.008 02087580 13 0.035 0.018 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 020875800 13 0.035 0.018607692					
0149349949 2 0.008 0.008 0149349970 2 0.008 0.008 0149349980 2 0.0158 0.00815 01610400 1 0.033 0.033 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 02085430 2 0.008 0.008 0208726955 6 0.0114 0.008566667 020872695 6 0.008 0.008 020872695 6 0.008 0.008 0208732610 6 0.008 0.008 02087580 13 0.03 0.018 020875840 2 0.008 0.008 02087580 13 0.03 0.018 02087580 13 0.03 0.018 02087580 13 0.03 0.008 02087580 <td></td> <td></td> <td></td> <td></td> <td></td>					
0149349970 2 0.008 0.008 0149349980 2 0.008 0.008 01493500 52 0.0158 0.00815 01610400 1 0.033 0.033 01646580 12 0.033 0.01295 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208726995 6 0.0098 0.008 0208730725 6 0.008 0.008 0208738610 6 0.008 0.008 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794555 3 0.008 0.008					
0149349980 2 0.008 0.008 01493500 52 0.0158 0.00815 01610400 1 0.033 0.033 01646580 12 0.033 0.01295 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 02085430 2 0.008 0.008 0208725055 6 0.0114 0.008566667 020872695 6 0.0014 0.008566667 020872695 6 0.008 0.008 020872695 6 0.008 0.008 020872695 6 0.008 0.008 0208730725 6 0.008 0.008 0208755215 10 0.02 0.0110 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008					
01493500 52 0.0158 0.00815 01610400 1 0.033 0.033 01646580 12 0.033 0.01295 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081510 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208730725 6 0.008 0.008 0208730725 6 0.008 0.008 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425		1			
01610400 1 0.033 0.033 01646580 12 0.033 0.01295 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 02085430 2 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208730725 6 0.009 0.008 0208732610 6 0.008 0.008 0208755215 10 0.02 0.01108 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 0209517912 2 0.008 0.008	•				
01646580 12 0.033 0.01295 01654000 30 0.033 0.009423333 02081190 2 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 02085430 2 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 0208794555 3 0.008 0.008 0209679455 2 0.008 0.008 0209679455 3 0.008 0.008 0209679455 3 0.008 0.008					
01654000 30 0.033 0.009423333 02081510 1 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 0208725055 6 0.0114 0.00856667 0208726370 6 0.008 0.008 0208726995 6 0.009 0.008 0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 020875840 2 0.008 0.0110 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02096517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209651815 2 0.008 0.008			- 1		
02081190 2 0.008 0.008 02081510 1 0.008 0.008 02081511 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 02087430 2 0.008 0.008 0208726370 6 0.0114 0.00856667 0208726995 6 0.009 0.008 0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 02087580 13 0.02 0.01108 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209651815 2					
02081510 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 02085430 2 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726995 6 0.008 0.008 0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 0208755215 10 0.02 0.01108 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209651815 2 0.008 0.008					
02081511 1 0.008 0.008 0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 02085430 2 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 0208794555 3 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209651815 2 0.008 0.008					
0208500600 6 0.008 0.008 0208501535 1 0.008 0.008 02085430 2 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208730725 6 0.0098 0.008 0208732610 6 0.008 0.008 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008		1			
0208501535 1 0.008 0.008 02085430 2 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208736995 6 0.0098 0.0083 0208732610 6 0.008 0.008 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					
02085430 2 0.008 0.008 0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208736995 6 0.0098 0.0083 0208732610 6 0.008 0.008 0208755215 10 0.02 0.01108 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					
0208725055 6 0.0114 0.008566667 0208726370 6 0.008 0.008 0208726995 6 0.0098 0.0083 0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 0208755215 10 0.02 0.01108 02087580 13 0.035 0.018607692 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008			-		
0208726370 6 0.008 0.008 0208726995 6 0.0098 0.0083 0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 0208755215 10 0.02 0.01108 020875840 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008		1.			
0208726995 6 0.0098 0.0083 0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 0208755215 10 0.02 0.01108 02087580 13 0.035 0.018607692 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					
0208730725 6 0.008 0.008 0208732610 6 0.008 0.008 0208755215 10 0.02 0.01108 020875840 13 0.035 0.018607692 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					
0208732610 6 0.008 0.008 0208755215 10 0.02 0.01108 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					
0208755215 10 0.02 0.01108 02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					
02087580 13 0.035 0.018607692 0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008	•				
0208758440 2 0.008 0.008 0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					
0208794025 3 0.008 0.008 0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					1
0208794555 3 0.008 0.008 02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008				i	l
02089500 12 0.033 0.01425 02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008				ł	!
02091500 12 0.033 0.01425 0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008				1	,
0209517912 2 0.008 0.008 0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008					i.
0209647280 2 0.008 0.008 0209647295 2 0.008 0.008 0209651815 2 0.008 0.008				, , , , , , , , , , , , , , , , , , , ,	0.008
0209647295 2 0.008 0.008 0209651815 2 0.008 0.008				,	0.008
0209651815 2 0.008 0.008				1	0.008
i i i	1			į.	
0209665940 2 0.008 0.008	0209665940		2	0.008	0.008

USGS Station ID	Count	Maximum	Average
0209665990	2	0.008	0.008
0209679804	2	0.008	0.008
0209695780	2	0.008	0.008
0209697900	2	0.008	0.008
02097355	3	0.008	0.008
0209737400	3	0.008	0.008
02097464	6	0.008	0.008
0209750881	2	0.008	0.008
02099238	2	0.0195	0.0131
02099480	2	0.008	0.008
02100295	2	0.008	0.008
02100634	2	0.008	0.008
0211583580	2	0.008	0.008
02169570	24	0.033	0.017625
02174250	22	0.033	0.019918182
02175000	. 22	0.033	0.019363636
02204230	2	0.008	0.008
02204468	2	0.008	0.008
02206314	2	0.008	0.008
02208150	2	0.008	0.008
02213450	2	0.008	0.008
02217293	2	0.008	0.008
02217471	2	0.008	0.008
02218700	2	0.008	0.008
02221000	2	0.008	0.008
02281200	10	0.033	0.013
02317797	18	0.008	0.008
02318500	30	0.033	0.010606667
02334885	9	0.033	0.012866667
02335870	36	0.07	0.012133333
02335910	2	0.008	0.008
02336635	9	0.033	0.011822222
02336728	2	0.008	0.008
02336822	2	0.008	0.008
02336876	2	0.008	0.008
02336968	9	0.033	0.011722222
02337395	6	0.008	0.008
02338000	12	0.033	0.015858333
02338280	2	0.008	0.008
02338375	2	0.008	0.008
02338523	8	0.008	0.008
02339480	2	0.008	0.008
02340282	2	0.008	0.008
02344340	2	0.008	0.008
02344480	6	0.008	0.008
02344737	5	0.008	0.008
02344797	9	0.033	0.013788889
02344887	2	0.008	0.008
02346358	2	0.008	0.008

USGS Station ID	Count	Maximum	Average
02347748	6	0.008	0.008
02350080	36	0.033	0.010083333
0242354750	12	0.033	0.014683333
02469762	12	0.033	0.01425
03353637	19	0.0098	0.007484211
03361638	48	0.008	0.008
03374100	16	0.033	0.0119625
0357479650	12	0.033	0.01425
03575100	12	0.033	0.01425
04072016	1	0.008	0.008
04072233	2	0.008	0.008
04078085	2	0.008	0.008
04080791	1	0.008	0.008
04081897	6	0.008	0.008
04084429	6	0.008	0.008
04084468	2	0.0178	0.0129
04085046	2	0.008	0.008
04085068	1	0.008	0.008
040850683	1	0.008	0.008
040851235	2	0.008	0.008
040851325	6	0.008	0.008
04085188	6	0.008	0.008
040851932	2	0.008	0.008
04085270	_ 2	0.008	0.008
040853145	6	0.008	0.007883333
04085322	2	0.008	0.008
040854395	2	0.008	0.008
04085455	2	0.008	0.008
04086699	2	0.0124	0.00895
040869415	23	0.008	0.008
04087030	5	0.008	0.008
0408703164	2	0.008	0.008
04087070	1	0.008	0.008
040870856	2	0.008	0.008
04087118	5	0.008	0.008
04087204	5	0.008	0.008
04087213	2	0.008	0.008
04087220	1	0.008	0.008
040872393	2	0.008	0.008
04087258	6	0.008	0.007466667
04087270	2	0.008	0.008
04161820	17	0.033	0.019764706
04186500	27	0.033	0.018185185
04193500	23	0.033	0.019613043
05288705	30	0.033	0.022206667
05320270	23	0.033	0.021043478
05451210	31	0.033	0.022516129
05465500	23	0.033	0.018869565
05527729	2	0.0539	0.0326

USGS Station ID	Count	Maximum	Average
05531500	12	0.033	0.013116667
055437901	2	0.008	0.008
05543796	1	0.008	0.008
05572000	30	0.033	0.022166667
05586100	. 24	0.033	0.019458333
06329500	2	0.008	0.008
06713500	32	0.033	0.01040625
06753990	1	0.008	0.008
06754000	11	0,04	0.017727273
06799750	24	0.008	0.008
06800000	. 70	0.033	0.008714286
06805500	12	0.033	0.01425
07053250	18	0.033	0.010777778
07288650	31	0.033	0.010622581
07288955	36	0.033	0.014275
08012150	12	0.033	0.014925
08049580	2	0.008	0.008
08055500	30	0.008	0.008
08057200	36	0.033	0.011688889
08057410	12	0.033	0.014933333
08064100	9	0.033	0.013555556
08178800	30	0.033	0.0114
08364000	32	0.033	0.0142625
09163500	9	0.033	0.013555556
094196783	31	0.033	0.010419355
10168000	12	0.033	0.014141667
10347699	17	0.008	0.008
10350340	4	0.033	0.02675
10350500	8	0.017	0.009125
11074000	12	0.033	0.01425
11273500	38	0.033	0.010965789
11274538	28	0.38	0.032889286
11303500	35	0.033	0.009882857
11447360	30	0.0598	0.023103333
11447650	35	0.033	0.014357143
12128000	30	0.033	. 0.0114
12504508	12	0.008	0.0071
12505450	53	0.192	0.010690566
12510500	29	0.033	0.009593103
13092747	30	0.033	0.009666667
13154500	34	0.033	0.013882353
14199710	2	0.008	0.008
14201300	30	0.311	0.052703333
14205400	6	0.008	0.008
14206347	2	0.008	0.008
14206750	2	0.008	0.008
14206950	32	0.033	0.009871875
14211315	2	0.008	0.008
14211720	15	0.033	0.013

USGS Station ID	Count	Maximum	Average
280248082220200	1	0.008	0.008
320132084004303	1	0.008	0.008
372323120481700	5	0.0981	0.08188
372829120420801	7	0.152	0.084271429
372839120413901	19	0.166	0.078010526
373012120393401	4	0.423	0.34675
373020120385201	1	0.0298	0.0298
373112120382901	23	0.507	0.241226087
373115120382801	26	0.079	0.033961538
374111121000301	1	0.124	0.124
374115120591601	1	0.176	0.176
393557105033101	2	.0.008	0.0074
393613104511401	2	0.015	0.0115
393944084120700	18	0.131	0.016311111
393948105053501	6	0.008	0.008
394107105021001	2	0.008	0.008
394340085524601	75	0.033	0.008845333
394409105020501	6	0.008	0.008
394553105075101	2	0.008	0.008
394629105063101	2	0.01	0.009
394919105074601	6.	0.008	0.007566667
394921105015701	6	0.008	0.008
395324105035001	2	0.008	0.008
395554105085601	2	0.13	0.0725
395707105100401	2	0.008	0.008
395743086030501	29	0.008	0.008
395958105113501	2	0.008	0.008
400000105125400	2	0.008	0.008
400023105142301	2	0.008	0.008
400217105123701	6	0.008	0.008
400607105094401	2	0.008	0.008
400810105071301	2	0.008	0.008
400855105090501	6	0.008	0.008
400925105023201	2	0.0099	0.00895
402549105043101	2	0.008	0.008
403035105035301	2	0.008	0.008
403048105042701	6	0.008	0.008
403308105001601	6	0.008	0.008
403356105024001	2	0.008	0.008
404200105145600	17	0.008	0.008
434745123040200	2	800.0	0.008
435212122483300	2	0.008	0.008
440257123103200	2	0.008	0.008
443326123165200	2	0.008	0.008
445029122592600	2	0.008	0.008
445551123015800	6	0.008	0.008
450022123012400	6	0.008	0.008
451734122585400	2	0.008	0.008
452149123194900	2	0.008	0.008

USGS Station ID	Count	Maximum	Average
452231122200000	6	0.008	0.008
452337122243500	6	0.045	0.02305
452414122213200	6	0.06	0.023683333
452526122364400	7	0.008	0.008
452912122291200	2	0.008	0.008
453506123125700	2	0.008	0.008
454321122352300	2	0.008	0.00605
454510122424900	6	0.008	0.008
454543122524900	2	0.008	0.008
454549122295800	6	0.008	0.008
455122122310600	6	0.008	0.008
462023120075200	65	0.0296	0.008101538
462023120075240	9	0.0194	0.008722222

TEXT SEARCHABLE DOCUMENT

Appendix D: Ecological Effects

2068734

1. Aquatic Effects Characterization

a. Aquatic Animals

(1) Acute Effects

Freshwater Fish and Aquatic-Phase Amphibians

	Freshwater Fish Acute Toxicity Data								
Common Name	%AI	Study parameters	LC ₅₀ /NOAEC/LOAEC	MRID	Classification/ Category				
Bluegill sunfish Lepomis macrochirus	84.5	96 hour study 10 fish/vessel 0, 0(solvent), 0.84, 1.5, 2.7, 4.7, 8.4 mg/L Static study	96 HR LC ₅₀ = 2.4 (1.5-4.7) mg/L ² . NOAEC = 1.5 mg/L LOAEC = 2.7 mg/L based on quiescence, loss of equilibrium and death.	00144285	Core Moderately toxic ¹				
Rainbow trout Onchorhynchus mykiss	84.5	96 hour study 10 fish/vessel 0, 0(solvent), 1.0, 1.8, 3.2, 5.6, 10 mg/L Static study	96 HR LC ₅₀ =4.2 (3.2-5.6) mg/L NOAEC = 1.8 mg/L LOAEC = 3.2 mg/L (loss of equilibrium, surfacing and dark coloration). Mortality observed at 5.6 mg/L and above.	00141677	Core Moderately toxic ¹				

¹Based on LC₅₀ (mg/L): < 0.1 very highly toxic; 0.1-1 highly toxic; >1-10 moderately toxic; >10-100 slightly toxic; >100 practically nontoxic

² **Bold** value is the value that will be used to calculate risk quotients

Look at 13-day frog study in ECOTOX

Freshwater Invertebrates

Freshwater Invertebrates Acute Toxicity Data							
Common Name	%AI	Study parameters	EC ₅₀ /NOAEC/LOAEC	MRID	Classification/ Category		
Water flea Daphnia magna	84.5	48 hour study 20 inverts/conc. level 0, 0(solvent), 1.8, 3.2, 5.6, 10, 18 mg/L Static study	48 HR EC ₅₀ =11 (9.5-13) mg/L ² . Slope = 6.83 (4.1 – 9.6) NOAEC = 10 mg/L LOAEC = 5.6 mg/L (settled to the bottom). Mortality observed at 10 mg/L and above.	00141678	Core Slightly toxic ¹		

Freshwater Invertebrates Acute Toxicity Data							
Common Name	%AI	Study parameters	EC ₅₀ /NOAEC/LOAEC	MRID	Classification/ Category		

¹Based on EC₅₀ (mg/L): < 0.1 very highly toxic; 0.1-1 highly toxic; >1-10 moderately toxic; >10-100 slightly toxic; >100 practically nontoxic

² Bold value is the value that will be used to calculate risk quotients

Marine/Estuarine Fish

Estuarine/Marine Fish Acute Toxicity Data						
Common Name	%AI	Study parameters	LC ₅₀ /NOAEC/LOAEC	MRID	Classification/ Category	
Sheepshead minnow Cyprinodon variegatus	93	96-hour study 20 fish/conc. Level 0, 0(solvent), 1.2, 1.8, 2.3, 3.8, 6.3 mg/L (mean measured) Flow-through study	96 HR LC ₅₀ =4.7 (3.8-6.3) mg/L ² . NOAEC = 1.2 mg/L LOAEC = 1.8 mg/L (errative hebanior, darkened pigmentation, lethargy; fish at higher concentration levels also exhibited partial loss of equilibrium and rapid respiration). Mortality observed at 3.8 mg/L and above.	42747903	Core Moderately toxic ¹	

¹Based on LC₅₀ (mg/L): < 0.1 very highly toxic; 0.1-1 highly toxic; >1-10 moderately toxic; >10-100 slightly toxic; >100 practically nontoxic ² **Bold** value is the value that will be used to calculate risk quotients

Marine/Estuarine Invertebrates

Estuarine/Marine Invertebrate Acute Toxicity Data						
Common Name	%AI	Study parameters	EC ₅₀ /NOAEC/LOAEC	MRID	Classification /Category	
Eastern oyster Crassostrea virginica	93	96-hour study 40 oysters/conc. level 0, 0(solvent), 0.091, 0.16, 0.29, 0.48, 0.78 mg/L (mean measured) Flow-through study	96 HR EC ₅₀ =0.68 0.64-0.73) mg/L ² . Slope = 2.09 (-0.8 - 5.0) NOAEC = 0.48 mg/L LOAEC = 0.78 mg/L (shell deposition). Inadequate shell growth in controls may mask pesticide related shell growth effects.	42747901	Supplemental Highly toxic ¹	

	Estuarine/Marine Invertebrate Acute Toxicity Data						
Common Name	%AI	Study parameters	EC ₅₀ /NOAEC/LOAEC	MRID	Classification /Category		
Mysid Mysidopsis bahia	93	Two 96-hour studies 20 mysids/conc. Level 0, 0 (solvent), 180, 260, 410, 550, 1000 µg/L (first study); 0, 0 (solvent), 34, 43, 78, 110, 200 µg/L (second study) (mean measured) Flow-through study	96-HR LC ₅₀ = 0.24 (0.20 – 0.27) mg/L. Slope = 6.4 Precise LC ₅₀ could not be determined in second study NOAEC could not be determined in first study. NOAEC = 0.043 mg/L from second study LOAEC = 0.078 mg/L (mortality; sublethal effects observed at levels where mortality was observed – lethargy, darkened pigmentation).	42747902	Core Highly toxic		

¹Based on EC₅₀ (mg/L): < 0.1 very highly toxic; 0.1-1 highly toxic; >1-10 moderately toxic; >10-100 slightly toxic; >100 practically nontoxic ² **Bold** value is the value that will be used to calculate risk quotients

(2) Chronic Effects

Freshwater Fish

Freshwater Fish ChronicToxicity Data						
Common Name	%AI	Study parameters	NOAEC/LOAEC	MRID	Classification /Category	
Fathead minnow · Pimephales promelas		Early life stage 0, 0 (solvent), 0.45, 0.98, 2.2, 4, 8.5 mg/L tested	0.98 mg/L ¹ Early life LOAEC=2.2 mg/L 2.2 < MATC < 4 mg/L. Total mortality at 8.5 mg/L.	00164986 40409201 40480401	Core	

¹ Bold value is the value that will be used to calculate risk quotients

Freshwater Invertebrates

There are currently no chronic freshwater invertebrate studies available for myclobutanil.

Estuarine/Marine Fish

There are currently no chronic estuarine/marine fish studies available for myclobutanil.

Estuarine/Marine Invertebrates

There are currently no chronic estuarine/marine invertebrate studies available for myclobutanil.

(3) Field Studies

There are currently no aquatic field studies available for myclobutanil.

b. Aquatic Plants

Aquatic Plant Toxicity Data						
Common Name	%AI	Toxicity	NOAEC	MRID	Classification /Category	
Freshwater green algae Tier II reproduction Selenastrum capricornutum	100	120-hour EC ₅₀ 0.83 mg/L ¹ (0.56-1.1). Mean measured concentrations tested: 0, 0 (solvent), 0.56, 1.1, 2.2, 5.1, 6.6 mg/L	120-hour NOAEC = 0.56 mg/L LOAEC = 1.1 mg/L (cell density)	419848-01	Core	

Bold value is the value that will be used to calculate risk quotients

2. Terrestrial Effects Characterization

a. Terrestrial Animals

(1) Acute Effects

Birds

		Avian Acute	Toxicity Data		
Common Name	%AI	Study parameters	LD ₅₀ /LC ₅₀ NOAEL/ LOAEL	MRID	Classification /Category
Bobwhite Quail Colinus virginianus	84.5	Acute oral study 10 birds/dose level 21 day observation period 0 (vehicle), 316, 464, 681, 1000, 1470 mg/kg tested	LD ₅₀ 498 (408 – 598) mg/kg bw ³ Slope = 7.03 (3.5-10.5) NOAEL not determined LOAEL 316 mg/kg (lethargy and anorexia). Mortalities at all dose levels (1, 4, 8, 10 and 10, respectively). Good dose response; NOAEL not critical in this case.	00144286	Core Slightly toxic ¹
Bobwhite Quail Colinus virginianus	84.5	Subacute dietary study 10 birds/concentration level 5 days on treatment, 3 days observation 0 (vehicle), 246, 641, 1150, 3000, 4530 ppm tested (measured concentrations)	LC ₅₀ >4530 ppm NOAEC: 1150 ppm LOAEC: 3000 ppm Mortality: 2 at 3000 ppm and 1 at 4530 ppm. Anorexia and lethargy at 3000 and 4530 ppm	00144287	Core Slightly toxic ²
Mallard Duck Anas platyrhynchos	84.5	Subacute dietary study 10 birds/concentration level 5 days on treatment, 3 days observation 0 (vehicle), 270, 620, 1250, 2220, 4090 ppm tested (measured concentrations)	LC ₅₀ >4090 ppm NOAEC: 1250 ppm LOAEC: 2220 ppm (anorexia and lethargy). One bird died at 4090 ppm.	00144287	Core Slightly toxic ²

¹ Based on LD₅₀ (mg/kg) <10 very highly toxic; 10-50 highly toxic; 51-500 moderately toxic; 501-2000 slightly toxic; >2000 practically nontoxic

Mammals

Mammalian Acute Toxicity Data						
Common Name	%AI	Study parameters	LD ₅₀ NOAEL	MRID	Classification /Category	

² Based on LC₅₀ (mg/kg) <50 very highly toxic; 50-500 highly toxic; 501-1000 moderately toxic; 1001-5000 slightly toxic; >5000 practically nontoxic

³ Bold value is the value that will be used to calculate risk quotients

	Mammalian Acute Toxicity Data						
Common Name	%AI	Study parameters	LD ₅₀ NOAEL	MRID	Classification /Category		
Laboratory rat Rattus norvegicus	91.9	Acute oral study 0, 1.3, 2.0, 3.2, 5.0 g/kg bw tested 10/dose level 14-day observation period	Acute oral LD ₅₀ =1.36 g/kg bw This study was conducted on female mice (original DER mistakenly stated that it was in the rat). Mortality at all dose levels tested. Multiple clinical signs, including ataxia, tremors, loss of righting and others – not dose-related; however, early deaths may have affected reporting. HED used rat values 1.6 (M) and 2.29 (F) g/kg bw	00165239 00141662	Core Slightly toxic ¹		

Based on LD₅₀ (mg/kg) <10 very highly toxic; 10-50 highly toxic; 51-500 moderately toxic; 501-2000 slightly toxic; >2000 practically nontoxic

Terrestrial Invertebrates

Data on honey bees are available (MRID 00144289); however, a review of the study is not available. These data indicate that myclobutanil (81.1%) technical is not toxic to honey bees at a dosage of $100\mu g$ /bee. The bees were exposed to a finished dust containing 27.58% a.i. in a bell jar vacuum duster at dosages of approximately 120, 240 or 362 μg technical material per bee. Observations for clinical signs of toxicity were made daily for 96 hours.

Look at earthworm study in ECOTOX

(2) Chronic Effects

Birds

Avian Chronic Toxicity Data						
Common Name	%AI	Study Parameters	NOAEC/LOAEC	MRID	Classification /Category	
Bobwhite Quail Colinus virginianus	94.2	Reproduction study Mean measured concentrations: 0 (vehicle), 72.5, 124.2, 181.8, 255.8 ppm 16 pairs per concentration level	NOAEC = 256 ppm ¹ LOAEC > 256 ppm No treatment-related effects at any level. Not tested at sufficiently high concentration levels	43087901	Supplemental	

practically nontoxic ² **Bold** value is the value that will be used to calculate risk quotients

	Avian Chronic Toxicity Data						
Common Name	%AI	Study Parameters	NOAEC/LOAEC	MRID	Classification /Category		
Mallard Duck Anas platyrhynchos	94.2	Reproduction study Mean measured concentrations: 0 (vehicle), 72.5, 124.2, 181.8, 255.8 ppm 16 pairs per concentration level	NOAEC = 256 ppm LOAEC >256 ppm No treatment-related effects at any level. Not tested at sufficiently high concentration levels	43087902	Supplemental		

Bold value is the value that will be used to calculate risk quotients

Mammals

	Mammalian Chronic Toxicity Data							
Common Name	%AI	Study Parameters	NOAEC/ LOAEC	MRID	Classification/ Category			
Laboratory rat Rattus norvegicus	84.5	2-Generation reproduction study 25 rats/sex/group 0, 50, 200 or 1000 ppm 4, 16 or 80 mg/kg bw/day based on overall mean concentration of active ingredient in dietary analyses (HED document 004936; HED records center file R050631).	NOAEC = 200 ppm NOAEL = 16 mg/kg/day LOAEC=1000 ppm LOAEL = 80 mg/kg/day (testicular, epididymal and prostatic atrophy in P2 males; slight increase in stillborns, decrease in body weight gain in pups during lactation in F1 and F2 generations)	00149581 00143766	Core			

¹ **Bold** value is the value that will be used to calculate risk quotients

RH-53,866 (technical myclobutanil, 84.5% pure) was tested in a 2-generation reproduction study with male and female CRL:CD(SD)BR rats. The rats were obtained from Charles River Breeding Laboratories, Kingston Facility, Stone Ridge, NY. Twenty-five animals/sex/dose group received 0, 50, 200 or 1000 ppm in the diet throughout the study (0, 2.5, 10 or 50 mg/kg/day by standard conversion factor). The animals were mated on a one to one ratio with the F_0 parental animals and were given test diets for 8 weeks before they were mated. Selection of the parents for the F_1 generation was made when the pups were 25 days of age, and the mated animals in the study were approximately 81 days of age at mating.

At 200 ppm, centrilobular hepatocellular hypertrophy was observed in the P_2 males. This was supported by slight but statistically significant increases in liver weights in males:

(114% absolute, 107% relative for P_1 and 107% absolute and 104% relative for P_2). At 1000 ppm, centrilobular hepatocellular hypertrophy was observed in both sexes in the P_1 and P_2 generations. These were again supported by slight but statistically significant increases in liver weights: males: (113.6% absolute, 114% relative for P_1 ; 107% absolute, 113% relative for P_2); females: (109% absolute, 109% relative for P_1 ; 106% absolute, 108% relative for P_2). Therefore, the parental (systemic) toxicity LOEL is 200 ppm and the parental (systemic) toxicity NOEL is 50 ppm based on hepatocellular hypertrophy and increases in liver weights.

At 1000 ppm, an increase in the number of stillborn or % born dead was observed in both generations (4.9 - 5.3% versus 0 - 1.9% in controls). In addition, multifocal or diffuse testicular atrophy was observed in males in the P₂ generation. Increased necrotic spermatocytes/spermatids or decreased spermatozoa and atrophy of the prostate were also observed in these animals. Therefore, the reproductive toxicity LOEL is 1000 ppm and the reproductive toxicity NOEL is 200 ppm based on an increased incidence in the number of stillborns and atrophy of the testes and prostate.

At 1000 ppm, it appears that there was a decrease in pup weight gain during lactation (83.3% to 89.7% of the controls). Therefore, the developmental toxicity LOEL is 1000 ppm and the developmental toxicity NOEL is 200 ppm based on a decrease in pup body weight gain during lactation.

This study is classified as Core Guideline.

Degradate: 1,2,4-triazole – developmental and reproduction data exist. There is evidence of developmental toxicity in available studies in rats and rabbits. In rats, reduced fetal body weight, an increased incidence of runts, an increase in skeletal variations and an increase in incidence of undescended testes were seen at the LOAEL of 100 mg/kg/day, a dose also causing decreased body weight gain in dams. At 200 mg/kg/day in rats, there was an increase in malformations, including cleft palate and hydronephrosis, accompanied by an increase in post-implantation loss. In rabbits, there was a decrease in fetal weight and an increase in incidence of urinary tract malformations at doses causing severe effects in does (weight loss, multiple clinical signs, and increased mortality). The dose-response in rabbits appears to be very steep, with no effects seen at 30 mg/kg/day, and mortality seen at 45 mg/kg/day (only 15 mg/kg/day higher). In summary, there was no increase in quantitative severity in either species. There was an increase in qualitative sensitivity (more severe effects) in rats, but not in rabbits.

TABLE X	TABLE X Toxicity Profile of 1,2,4 triazole as it relates to potential reproductive effects										
Gdln	Study Type/	MRID	Doses	Results							
	Classification	Number									
870.3050	28-Day oral	4646730	0, 50,250, 500, 2000	NOAEL: 90 mg/kg/day							
Ì	toxicity in mice	1	ppm	LOAEL: 356 mg/kg/day (male) based on							
	Acceptable/	·	M: 9, 47, 90, 356 mkd	testicular degeneration							
1	non-guideline		F : 12, 60, 120, 479								
			mkd								

TABLE X	Toxicity Profile	of 1,2,4 to	riazole as it relates to po	tential reproductive effects
Gdln	Study Type/	MRID	Doses	Results
	Classification	Number		
870.3100	90-Day oral	4646730	0, 500, 1000, 3000,	NOAEL: 80 mg/kg/day
	toxicity in mice	2	6000 ppm	LOAEL: 161 mg/kg/day based on
	Acceptable/	1	M: 80, 161, 487, 988	testicular wt and microscopic testicular
1	guideline		mkd	changes
1	1	1	F : 105, 215, 663, 1346	At 487 mg/kg/day, also tremors, ↓brain wt,
			mkd	slight hematology changes. At 988
				mg/kg/day, also cerebellar degeneration.
870.3700	Developmental	4522340	0, 100, 200 mg/kg/day	Maternal NOAEL: 30 mg/kg/day
	toxicity in rats	1	0, 10, 30, 100	Maternal LOAEL: 100 mg/kg/day based on
1	Acceptable/	4522340	mg/kg/day	↓BW gain
	guideline	2		Developmental NOAEL: 30 mg/kg/day
			•	Developmental LOAEL: 100 mg/kg/day
Į				based on √fetal BW, skeletal variations,
				undescended testes
<u>'</u>			,	Also at 200, increased resorptions and
(decreased number of viable fetuses, cleft
1		İ		palate, hydronephrosis, increased incidence
				of major malformations
870.3700	Developmental	4649290	0, 5, 15, 30, 45	Maternal NOAEL: 30 mg/kg/day
	toxicity in	3	mg/kg/day	Maternal LOAEL: 45 mg/kg/day based on
	rabbits			mortality and clinical signs (\psi motor activity,
	Acceptable/			head tilt, lacrimation, drooping eyelids,
	guideline	,		diarrhea, salivation)
				Developmental NOAEL: 30 mg/kg/day
				Developmental LOAEL: 45 mg/kg/day
)			based on √fetal wt and urinary tract
070 2000	D 1 .:	4646520	0.050 500 2000	malformations
870.3800	Reproduction	4646730		Parental NOAEL: <15 mg/kg/day
	and fertility	4	M: 15, 31, 189 mkd	Parental LOAEL: 15 mg/kg/day (male)
	effects	'	F: 18, 36, 218 mkd	based on ↓BW and BWG in F1 males,
l	Acceptable			↓spleen weight in F1 females
				At 218 mg/kg/day: cerebellar lesions, ↓brain
] .				weight, ↓thyroid weight,
				Offspring NOAEL: <19 mg/kg/day
				Offspring LOAEL: 19 mg/kg/day based on
				↓BW, BWG and brain wt in F2 pups,
				↓spleen weight in F2 female pups.
				Repro NOAEL: 15 mg/kg/day
				Repro LOAEL: 31 mg/kg/day based on
				abnormal sperm and ↓# of CL in F1 females
				At 218 mg/kg/day, reproductive failure (no
				viable offspring), ↑CL in F0 parental
L				females

Developmental Toxicity Studies

There is evidence of developmental toxicity in available studies in rats and rabbits. In rats, reduced fetal body weight, an increased incidence of runts, an increase in skeletal variations and an increase in incidence of undescended testes were seen at the LOAEL of 100 mg/kg/day, a dose also causing decreased body weight gain in dams. At 200

mg/kg/day in rats, there was an increase in malformations, including cleft palate and hydronephrosis, accompanied by an increase in post-implantation loss. In rabbits, there was a decrease in fetal weight and an increase in incidence of urinary tract malformations at doses causing severe effects in does (weight loss, multiple clinical signs, and increased mortality). The dose-response in rabbits appears to be very steep, with no effects seen at 30 mg/kg/day, and mortality seen at 45 mg/kg/day (only 15 mg/kg/day higher). In summary, there was no increase in quantitative severity in either species. There was an increase in qualitative sensitivity (more severe effects) in rats, but not in rabbits.

Reproductive Toxicity Study

There is evidence of increased offspring sensitivity, both quantitative and qualitative, in the reproductive toxicity study in rats. In adult (F1) male offspring, decreases in body weight and brain weight were seen at doses of 15-16 mg/kg/day and 36 mg/kg/day, respectively. Similar effects were seen in parental (F0) animals only at the highest dose of 189 mg/kg/day. Similarly, decreased brain weight and body weight were seen at (parental) doses of 18.9 mg/kg/day in F2 pups, doses below those causing similar effects in F0 animals (189 mg/kg/day). Decreases in corpora lutea were seen in F1 females at 36 mg/kg/day; similar effects were not seen in F0 females (increases in corpora lutea were seen at the high dose of 218 mg/kg/day; no changes were seen in mid-dose F0 females).

(3) Field Studies

There are currently no terrestrial field studies available for myclobutanil.

b. Terrestrial Plants

There are currently no terrestrial plant studies available for myclobutanil.

TEXT SEARCHABLE DOCUMENT

Appendix E. The Risk Quotient Method And Levels of Concern

2068735

The risks to terrestrial and aquatic organisms are determined based on a method by which risk quotients (RQs) are compared with levels of concern (LOCs). This method provides an indication of a chemical's potential to cause an effect in the field from effects observed in laboratory studies, when used as directed. Risk quotients are expressed as the ratio of the estimated environmental concentration (EEC) to the species-specific toxicity reference value (TRV):

$$RQ = \frac{EEC}{TRV}$$

Units for EEC and TRV should be the same (e.g., $\mu g/L$ or ppb). The RQ is compared to the LOC as part of a risk characterization. Acute and chronic LOCs for terrestrial and aquatic organisms are given in recent Agency guidance (EPA, 2004) and summarized in the table below.

Level of concern (LOC) by risk presumption category (U.S. EPA 2004).

Risk Presumption	RQ	LOC
	Mammals and Birds	
Acute Risk ^a	EEC ^b /LC ₅₀ or LD ₅₀ /sqft ^c or LD ₅₀ /day ^d	0.5
Acute Restricted Use e	EEC/LC ₅₀ or LD ₅₀ /sqft or LD ₅₀ /day (or LD ₅₀ $<$ 50 mg/kg)	0.2
Acute Endangered Species f	EEC/LC ₅₀ or LD ₅₀ /sqft or LD ₅₀ /day	0.1
Chronic Risk	EEC/NOAEC	1
	Aquatic Animals	
Acute Risk	EECg/LC ₅₀ or EC ₅₀	0.5
Acute Restricted Use	EEC/LC ₅₀ or EC ₅₀	° 0.1
Acute Endangered Species	EEC/LC ₅₀ or EC ₅₀	0.05
Chronic Risk	EEC/NOAEC	1
	Terrestrial and Semi-aquatic Plants	
Acute Risk	EEC/EC ₂₅	1
Acute Endangered Species	EEC/EC ₀₅ or NOAEC	1
	Aquatic Plants	
Acute Risk	EECh/EC ₅₀	1 .
Acute Endangered Species	EEC ^g /EC ₀₅ or NOAEC	1

^aPotential for acute toxicity for receptor species if RQ > LOC (EPA, 2004).

cmg/ft² dmg of toxicant consumed per day

Potential for acute toxicity for receptor species, even considering restricted use classification, if RQ > LOC (EPA, 2004).

Potential for acute toxicity for endangered species of receptor species if RQ > LOC (EPA, 2004).

^gEEC = ppb or ppm in water ^hEEC = lbs a.i./A

The LOCs are criteria used by OPP to indicate potential risk to non-target organisms and the need to consider regulatory action. The criteria indicate that a pesticide used as directed has the potential to cause adverse effects on non-target organisms. LOCs currently address the following risk presumption categories: (1) acute - potential for acute risk to non-listed species; regulatory action may be warranted in addition to restricted use classification, (2) acute restricted use - potential for acute risk to non-

^bEstimated environmental concentration (ppm) on avian/mammalian food items

listed species; however, risk may be mitigated through restricted use classification, (3) acute endangered species - potential for acute risk to endangered species; regulatory action may be warranted, and (4) chronic risk - potential for chronic risk; regulatory action may be warranted. Currently, due to lack of modeling applications, EFED does not perform assessments for chronic risk to plants, acute or chronic risks to non-target insects or chronic risk from granular/bait formulations to mammalian or avian species.

For acute studies on taxa where no effects were observed at any concentration level, the RQs are not calculated and a qualitative discussion is provided in the Risk Description section. For acute studies on taxa where an LC_{50}/LD_{50} is not established due to insufficient mortality but some mortality was observed in the study, again, the RQs are not calculated and the study is discussed further in the Risk Description section.

The ecotoxicity test values (i.e., measurement endpoints) used in the acute and chronic risk quotients are derived from the results of required studies. Examples of ecotoxicity values derived from the results of short-term laboratory studies that assess acute effects are: (1) LC_{50} (fish) (2) LD_{50} (birds and mammals) (3) EC_{50} (aquatic plants and aquatic invertebrates) and (4) EC_{25} (terrestrial plants). An example of a toxicity test effect level derived from the results of long-term laboratory study that assesses chronic effects is: NOAEC (No Observed Adverse Effect Level; birds, fish and aquatic invertebrates).

TEXT SEARCHABLE DOCUMENT

Appendix F: Incidence Summary Reports

Back to Main Mer	nu Print			EIIS Pes	ticide	Repo	rt	Pesticide: My	clobutanil	
Go to Part B				Part A: Ge	eneral Info	rmation		P.C. Code: 12	28857	
Incident #	Treatment Site	<u>Date</u>	County	State	Certainty	<u>Legality</u>	<u>Formulation</u>	Appl. Method	Magnitude	
PLANTS									Count:	4
I002621-006	Grape	5/30/1994		CA	2	RU		Spray	ALL	
1013563-014	Grape	6/2/2000	Fresno	CA	2	RU		Spray	6 acres	
1014702-074	Nursery	6/16/2003	Cecil	MD	2	UN	Wettable powder	Broadcast	200 houses	

Total Number of Incidents

3

Back to Main	Menu	<u>Print</u>		EIIS Pestic	ide Report	Pesticide:	Myclobutanil	-
Go to Par	1A			Part B: Effect	ts Information	P.C. Code:	128857	
Incident #	<u>Date</u>	<u>State</u>	Species	Response	Route Exposed	Magnitude for Species	Residue Analysis	٠
<u>PLANTS</u>				<u> </u>				
I002621-006	5/30/1994	CA	Grape	Incapacitation			No	
1013563-014	6/2/2000	CA	Grape	Plant damage	Treated directly	6 acres	No	
I014702-074	6/16/2003	MD	ROSE BUSHES	Plant damage	Treated directly	200 houses	No	

Three incidence reports were filed for myclobutanil between 1994 and 2003, all with effects on terrestrial plants (two incidences with grapes and one with roses). The two incidences with grapes occurred in California and the one with roses was reported in Maryland. The certainty index for the damage in all 3 incidences was rated as possibly related to exposure to myclobutanil. The two incidences with grapes involved application of other pesticides as well as the myclobutanil. Therefore, it is not definitively known whether or not the effects were due to exposure to myclobutanil in these two incidences. Myclobutanil was the only pesticide applied to the rose bushes in the third reported incidence.

Incident 1: Rally 40W (myclobutanil), Pro Gibb (gibberellic acid), dimethogan 25 WP, Pro Kil Cryolite 96 (sodium fluoaluminate), Britz binder and Booster 42 Foliar Spray (polymeric polyhydroxy acids) were applied by ground application to grape vines. Shortly after the last application, scarring of the berries, stunted vine growth, lack of berry size increase, dieback of fruit from total bunches and limited cone growth with straggly branches were observed. No residue analysis was conducted. The California Commissioner's report indicated that mixtures of Pro-Gibb 4% and Pro-Kil Cryolite 96 may cause some compatibility problems. No specific data on terrestrial plants were found in the Agency files for any of the pesticides applied on this incident.

Incident 2: It was reported that Rally 40W damaged 6 acres of Red Globe and Thompson's grapes to the point that they could not be sold. Burns and necrosis on bunches (Red Globe) and leaf burn (Thompson's) were observed. Agri-MEK (abamectin) and Ad-Wet were also applied, using a ground spray on the vineyard. Again, no specific data on terrestrial plants were found in the Agency files for any of the pesticides applied on this incident.

Incident 3: Systhane (myclobutanil) was applied via a broadcast spray to rose bushes grown in greenhouses by local residents in Maryland. The total magnitude was 200 houses. Foliar necrosis and some defoliation were observed after exposure to systhane. Damage varied from house to house and by rose variety.

TEXT SEARCHABLE DOCUMENT

Appendix G. Terrestrial Risk Quotients T-REX Model (Version 1.3.1, July 7, 2007)

2068737

Г-1

This spreadsheet-based model calculates the residues on avian and mammalian food items along with the dissipation rate of a chemical applied to foliar surfaces (for single or multiple applications) in order to estimate acute and reproductive risk quotients. The results are presented by weight class for various sized birds and mammals for each type of application.

T-REX uses the same principle as the batch code models FATE and TERREEC that calculate terrestrial exposure concentration estimates on plant surfaces following pesticide application. However, T-REX performs a number of calculations that neither FATE nor TERREEC perform. For example, T-REX adjusts acute and chronic toxicity values based on the relative body weight of the animal being assessed compared with the animal used in the toxicity studies. T-REX also calculates risk quotients for granular applications and seed treatments.

Risk Estimation Based on Dietary Residue Concentrations (Foliar Spray)

The methods used by T-REX to estimate risk from consumption of selected contaminated food items is described below. For this analysis, T-REX calculates EECs and risk quotients based on both the upper bound and mean residue concentrations as presented by Hoerger and Kenaga (1972) and modified by Fletcher et al. (1994). These concentrations are determined using nomograms that relate application rate of a pesticide to residues remaining on dietary items of terrestrial organisms. The results of the upper bound and mean residue levels are presented in separate tabs ("upper bound Kenaga" and "mean Kenaga"); however, the methods used to calculate EECs and risk quotients are equivalent. Only RQs from the upper bound Kenaga worksheet are to be used for comparison to levels of concern in the assessment. The mean residues, and the RQs generated from them, presented in the mean Kenaga worksheet are to be used only for risk description. Replacing the upper bound residues with the mean residues is not a valid mitigation approach when upper bound residues result in LOC exceedances. Based on the estimated dietary residue concentrations from the upper bound and mean Kenaga values, T-REX calculates the associated doses for various size classes of birds and mammals. Both the dietary concentration (mg/kg-dietary item) and the resulting estimated doses (mg/kg-bw) may be used for risk estimation. The resulting dietary based and concentration based risk quotients are discussed below.

This section describes how T-REX estimates the following: (1) residue concentrations on selected food items (mg/kg-dietary item); (2) dose-based EECs (mg/kg-bw) from dietary concentrations on selected food items; (3) adjusted toxicity values; and (4) risk quotients.

Calculation of Dietary Concentrations on Selected Food Items

The spreadsheet calculates the pesticide residue concentrations on each selected food item on a daily interval for one year. When multiple applications are modeled, residue concentrations resulting from the final application and remaining residue from previous applications are summed. The maximum concentration calculated out of the 365 days is returned as the EEC used to estimate potential risk to birds and mammals as described

below. Dissipation of a chemical applied to foliar surfaces for single or multiple applications is calculated assuming a first order decay rate from the following first order rate equation:

$$CT = C_i e^{-kT}$$

or in log form:

$$ln(CT/C_i) = kT$$

Where

CT = concentration at time T = day zero.

- C_i = concentration, in parts per million (PPM), present initially (on day zero) on the surfaces. C_i is calculated by multiplying the application rate, in pounds active ingredient per acre, by 240 for short grass, 110 for tall grass, and 135 for broad-leafed plants/small insects and 15 for fruits/pods/large insects based on the Kenaga nomogram (Hoerger and Kenaga, 1972) as modified by Fletcher (1994). For maximum concentrations, additional applications are converted from pounds active ingredient per acre to PPM on the plant surface and the additional mass added to the mass of the chemical still present on the surfaces on the day of application.
- k = If the foliar dissipation data submitted to EFED are found scientifically valid and statistically robust for a specific pesticide, the 90% upper confidence limit of the mean half-lives should be used. When scientifically valid, statistically robust data are not available, EFED recommends using a default half-life value of 35 days. The use of the 35-day half-life is based on the highest reported value (36.9 days), as reported by Willis and McDowell (Pesticide persistence on foliage, Environ. Contam. Toxicol, 100:23-73, 1987).
- T = time, in days, since the start of the simulation. The initial application is on day 0. The simulation is designed to run for 365 days.

The dietary concentrations estimated using the above methodology may be used directly to calculate risk quotients, but may also be used to calculate dose-based EECs (mg/kg-bw) for various size classes of mammals and birds as below.

Calculating EEC Equivalent Doses based on Estimated Dietary Concentrations on Selected Bird and Mammal Food Items

EECs (mg/kg-bw) for various size classes of mammals and birds may be calculated based on the dietary residue concentrations derived using the equations presented above. To allow for this type of analysis, the EECs and toxicity values are adjusted based on food intake and body weight differences so that they are comparable for a given weight class of animal. The size classes assessed are small (20-gram), medium (100-gram), and large (1000-gram) birds, and small (15-gram), medium (35-gram), and large (1000-gram) mammals. Equations used

to calculate food intake (grams/day) and to adjust toxicity values for dose-based risk quotients are presented below.

Calculating Food Intake for Different Size Classes of Birds and Mammals:

Daily food intake (g/day) is assumed to correlate with body weight using the following empirically derived equation (U.S. EPA, 1993): Avian consumption

where:

F = food intake in grams of fresh weight per day (g/day)
BW = body mass of animal (g)
W = mass fraction of water in the food (EFED value = 0.8 for birds and herbivorous mammals, 0.1 for granivorous mammals)

Based on this equation, a 20-gram bird would consume 22.8 grams of food daily (114% of its body weight), a 100-gram bird would consume 65 grams of food daily (65% of its body weight daily), and 1000-gram bird would consume 290 grams of food daily (29% of its body weight). These data, together with the residue concentrations (mg/kg-food item) on selected food items calculated from the Kenaga nomogram, are used to estimate the dose (mg/kg-bw) of residue consumed by the three size classes of birds as discussed below. Using a small (20-gram) bird as an example, a dietary concentration of 100 mg/kg-diet (ppm) x 1.14 kg diet/kg bw (114%) would result in an equivalent dose-based EEC of 114 mg/kg-bw. T-REX calculates food intake based on dry weight and wet weight of food items. The dose-based assessment uses the wet weight food consumption values by assuming that dietary items are 80% water by weight. However, if dietary items of a species being assessed are known, then a refined dose-based EEC can be calculated using appropriate water fractions of the food items.

A similar relationship between body weight and food intake has been derived for mammals (U.S. EPA 1993):

Mammalian food consumption

(g/day)

where:

F =food intake in grams of fresh weight per day (g/day)

BW = body mass of animal (g)

W = mass fraction of water in the food (EFED value = 0.8 for birds and herbivorous mammals, 0.1 for granivorous mammals)

The scaling factors result in a percent body weight consumed presented in the following table for each weight class of mammal. These values are used in the same manner described for birds to calculate dose-based EECs (mg/kg-bw). Note the difference in food intake of grainivores compared with herbivores and insectivores. This is caused by the difference in the assumed mass fraction of water in their diets.

Table G1. Scaling factors and percent body weight consumed for 3 weight classes of mammals

Organism and Body Weight	Food Intake (g day ⁻¹) ^a	Percent Body Weight Consumed (day -1) a		
15 g	14.3 / 3.2	95 / 21		
35 g	23 / 5.1	66 / 15		
1000 g	150 / 34	15/3		

^a The first number in this column is specific to herbivores/insectivores. The second number is for granivores. These groups have markedly different consumption requirements.

T-REX calculates food intake based on dry weight and wet weight of food items (wet weight is used for RQ calculations). The dose-based assessment uses the wet weight food consumption values by assuming that dietary items are 80% water by weight (10% for granivores). However, if dietary items of a species being assessed are known, then a refined dose-based EEC can be calculated using appropriate water fractions of the food items.

Calculating Adjusted Toxicity Values

The dose-based EECs (mg/kg-bw) derived above are compared with LD₅₀ or NOAEL (mg/kg-bw) values from acceptable or supplemental toxicity studies that are adjusted for the size of the animal tested compared with the size of the animal being assessed (e.g., 20-gram bird). These exposure values are presented as mass of pesticide consumed per kg body weight of the animal being assessed (mg/kg-bw). EECs and toxicity values are relative to the animal's body weight (mg residue/kg bw) because consumption of the same mass of pesticide residue results in a higher body burden in smaller animals compared with larger animals. For birds, only acute values (LD₅₀s) are adjusted because dose-based risk quotients

are not calculated for the chronic risk estimation. Adjusted mammalian $LD_{50}s$ and reproduction NOAELs (mg/kg-bw) are used to calculate dose-based acute and chronic risk quotients for 15-, 35-, and 1000-gram mammals. The following equations are used for the adjustment (U.S. EPA 1993):

Adjusted avian LD₅₀:

$$Adj. LD_{50} = LD_{50} \left(\frac{AW}{TW}\right)^{(x-1)}$$

where:

 $Adj. LD_{50}$ = adjusted LD₅₀ (mg/kg-bw) calculated by the equation LD_{50} = endpoint reported from bird study (mg/kg-bw) TW = body weight of tested animal (178g bobwhite; 1580g mallard; 350g rat) AW = body weight of assessed animal (avian: 20g, 100g, and 1000g) x = Mineau scaling factor for birds; EFED default 1.15

Adjusted mammalian NOAELs and LD $_{50}$ s (note that the same equation is used to adjust the NOAEL):

$$Adj.NOAEL or LD_{50} = NOAEL or LD_{50} \left(\frac{TW}{AW}\right)^{(0.25)}$$

where:

Adj. NOAEL or LD_{50} = adjusted NOAEL or LD_{50} (mg/kg-bw) NOAEL or LD_{50} = endpoint reported from bird study (mg/kg-bw) TW = body weight of tested animal (350g rat) AW = body weight of assessed animal (15g, 35g, 1000g)

In this case, an acute mouse study was used for the endpoint selection. The LD_{50} from the mouse study was converted to an LD_{50} for the rat study prior to utilizing the study in T-REX. The LD_{50} for the mouse study is 1360 mg/kg. Using the equation provided above, the conversion for T-REX is as follows:

$$1360 \times (20/350)^{0.25} = 1360 \times 0.49 = 665 \text{ mg/kg}$$
.

Calculating Risk Quotients

Two types of risk quotients are calculated by T-REX based on the estimated dietary residue concentrations determined from the Kenaga nomogram: (1) dietary based RQs; and (2) dose based RQs. These RQs are not equivalent. Dietary risk quotients are calculated by directly comparing the concentration of a pesticide administered (or estimated to be administered) to experimental animals in the diet in a toxicity study to the concentration estimated to be on selected food items. These risk quotients do not account for the fact that smaller-sized animals need to consume more food relative to their body weight than larger animals or that differential amounts of food are consumed depending on the water content and nutritive value of the food. The dose-based risk quotients do account for these factors. The dose-based RQs incorporate the ingestion rate-adjusted exposure from the various food items to the different weight classes of birds and the weight class-scaled toxicity endpoints. Formulas presented in Table 2 are used to calculate dose-based and dietary based risk quotients:

Table G2. Formulas used to calculate dose- and dietary-based risk quotients

Duration	Dose or Dietary RQ	Surrogate Organism	Equation
Acute	Dose-based	Birds and mammals	Acute Daily Exposure (mg/kg-bw) / adjusted LD50 (mg/kg-bw)
	Dietary-based	Birds	Kenaga EEC (mg/kg-food item) / LC50 (mg/kg-diet)
Chronic	Dietary-based	Birds and mammals	EEC (mg/kg-food item) / NOAEC (mg/kg-diet)
	Dose-based	Mammals	EEC (mg/kg-bw) / Adjusted NOAEL (mg/kg-bw)

These risk quotients are compared to the Agency's LOCs to determine if risk is greater than EFED's concern level.

T-REX Model Input:

	Table G3. Ecotoxicity	Endpoints	
Avian	Bobwhite quail	LD ₅₀ (mg/kg-bw)	498
	Mallard duck	LC ₅₀ (mg/kg-diet)	
	Bobwhite quail	NOAEC (mg/kg-diet)	256
Mammals	Mouse LD ₅₀ (mg/kg-bw)		665
-	NOAEL (mg/kg-bw)		16
_	NOAEC (mg/kg-diet)		200

Table G-4. T-REX Tropical Fruits Rally 40WSP/Nova 40W 0.25 lbs/A; 8 applications/season Upper Bound Kenaga Acute Avian Dose-Based Risk Quotients **EECs and RQs** Fruits/Pods/ Broadleaf Plants/ Adjusted **Short Grass Tall Grass** Size Class Seeds/ **Small Insects** LD50 Large Insects (grams) EEC RQ EEC RQ EEC RQ EEC RQ

115.27

65.73

0.32

0.14

141.47

80.67

0.39

0.18

15.72

8.96

4.01

0.04

0.02

0.01

1000 645.16 64.21 **0.10** 29.43 0.05 36.12 0.06 1 LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

 $0.70^{1,2}$

251.50

143.41

² Bolded values exceed LOC

358.77

456.74

20

100

Tab		bs/A; 4 ap Uppe	plicatio r Boun	ns/seas d Kena;	on; 10 ga EE	-Day In Cs	terval	/Nova	40W
Acute Avian Dose-Based Risk Quotients EECs and ROs									
Size Class (grams)	Adjusted LD50	Short Grass		Tall Grass		Broadleaf Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects	
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
20	358.77	104.05	$0.29^{1,2}$	47.69	47.69 0.13		0.16	6.50	0.02
100	456.74	59.33	0.13 27.19 0.06		33.38	0.07	3.71	0.01	
1000	645.16	26.56	0.04	12.18	0.02	14.94	0.02	1.66	< 0.01

¹LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

² Bolded values exceed LOC

Tab		ng Vegetables and lbs/A; 4 application	ons/season; 14	l-Day Interval	Nova 40W		
		Upper Boun	d Kenaga EE	Cs			
	A	cute Avian Dose-	Based Risk (Quotients			
Size Class	Adjusted	EECs and RQs					
(grams)	LD50	Short Grass	Tall Grass	Broadleaf Plants/ Small Insects	Fruits/Pods/ Seeds/ Large Insects		

Table	Table G-6. Fruiting Vegetables and Other Crops Rally 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 14-Day Interval Upper Bound Kenaga EECs								
	Acute Avian Dose-Based Risk Quotients								
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
20	358.77	94.56	0.261,2	43.34	0.12	53.19	0.15	5.91	0.02
100	456.74	53.92	0.12	24.71	0.05	30.33	0.07	3.37	0.01
1000	645.16	24.14	0.04	11.06	0.02	13.58	0.02	1.51	< 0.01

 $^{^{1}}$ LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1 2 **Bolded** values exceed LOC

	,		/A; 6 ap er Boun	plicatio d Kenaș	ns/sea ga EE	ison Cs	s		
Size Class (grams)	Adjusted LD50	Short	Short Grass Tall Grass			and RQ Broad Plan Small I	lleaf its/	Fruits/Pods/ Seeds/ Large Insects	
		EEC	RQ	EEC	RQ	EEC 51.47	RQ	EEC	RQ
20	358.77	91.50	0.261,2	41.94	41.94 0.12		0.14	5.72	0.02
100	456.74	52.17	0.11	23.91	0.05	29.35	0.06	3.26	0.01
1000	645.16	23.36	0.04	10.71	0.02	13.14	0.02	1.46	< 0.01

 $^{^{1}}$ LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1 2 **Bolded** values exceed LOC

Mammals

Table G-8. T-REX Tropical Fruits Rally 40WSP/Nova 40W 0.25 lbs/A; 8 applications/season Upper Bound Kenaga Acute Mammalian Dose-Based Risk Quotients ¹											
Size Class (grams)	Adjusted LD50 ²	Short Grass Tall Grass Broadleaf Fruits/Pods/ Small Insects Large Insects							Granivore		
		EEC	\mathbf{RQ}^{1}	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	1461.56	210.54	0.14	96.50	0.07	118.43	0.08	13.16	0.01	2.92	< 0.01
35	1182.56	145.51	0.12	66.69	0.06	81.85	0.07	9.09	0.01	2.02	< 0.01
1000	511.49	33.74	0.07	15.46	0.03	18.98	0.04	2.11	< 0.01	0.47	< 0.01

LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1 2 LD₅₀ based on acute toxicity study on the mouse, most sensitive species 3 **Bolded** values exceed the LOC

Table G-9. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 10-Day Interval **Upper Bound Kenaga EECs**

Acute Mammalian Dose-Based Risk Quotients

Tiette TABITATION D'OU D'AUTE QUE TABITE QUE TABITE											
						EECs a	and R	Qs			
Size Class (grams)	Adjusted LD50	Short Grass		Tall C	Tall Grass Broadleaf Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects		Granivore		
		EEC	RQ^1	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	1461.56	87.10	0.06	39.92	0.03	49.00	0.03	5.44	< 0.01	1.21	< 0.01
35	1182.56	60.20	0.05	27.59	0.02	33.86	0.03	3.76	<0.01	0.84	< 0.01
1000	511.49	13.96	0.03	6.40	0.01	7.85	0.02	0.87	<0.01	0.19	< 0.01

¹LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

Table G-10. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 14-Day Interval Upper Bound Kenaga EECs

Acute Mammalian Dose-Based Risk Quotients

Acute Mainmanan Dose-Dased Risk Quotients											
EECs and)s			
Size Class (grams)	Adjusted LD50	Short	Grass	Tall (Grass	Broadleaf Plants/ Small Insects		nts/ Seeds/ all Large		Granivore	
		EEC	RQ1	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	1461.56	79.16	0.05	36.28	0.02	44.53	0.03	4.95	0.00	1.10	0.00
35	1182.56	54.71	0.05	25.07	0.02	30.77	0.03	3.42	0.00	0.76	0.00
1000	511.49	12.68	0.02	5,81	0.01	7.13	0.01	0.79	0.00	0.18	0.00

¹LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

Table G-11. Artichokes Rally 40WSP 0.1 lbs/A; 6 applications/season **Upper Bound Kenaga EECs**

Acute Mammalian Dose-Based Risk Quotients											
EECs and RQs											
Size Class (grams)	Adjusted LD50	Short	Grass	Tall C	Grass	Broadleaf Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects		Granivore	
		EEC	RQ ¹	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	1461.56	76.59	0.05	35.11	0.02	43.08	0.03	4.79	<0.01	1.06	< 0.01
35	1182.56	52.94	0.04	24.26	0.02	29.78	0.03	3.31	<0.01	0.74	< 0.01
1000	511.49	12.27	0.02	5.63	0.01	6.90	0.01	0.77	<0.01	0.17	<0.01

¹LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

Birds

				·				
	Table G-12	. T-REX Tro	pical Fru	its Ral	ly 40WS	P/Nova	40W	
		0.25 lbs/A	: 8 applic	ations/	season			
			er Bound					
	Ch	ronic Avian		ased Ri		tients		
NOAEC	Sh	ort Grass	Tall (Grass	Broa Pla Small	nts/	Fruits/F Seed Large In	s/
(ppm)	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
256	220.82	0.86	101.21	0.40	124.21	0.49	13.80	0.05

Size class not used for dietary risk quotients

Table G-13. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 10-Day Interval Upper Bound Kenaga EECs

Chronic Avian Dietary Based Risk Quotients									
EECs and RQs ¹									
NOAEC	Short (Grass	Tall	Tall Grass		Broadleaf Plants/ Small Insects		/Pods/ ds/ insects	
(ppm)	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	
256	91.36	0.36	41.87	0.16	51.39	0.20	5.71	0.02	

Size class not used for dietary risk quotients

Table G-14. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 14-Day Interval Upper Bound Kenaga EECs

Chronic Avian Dietary Based Risk Quotients

¹LOC for chronic risk = 1

¹LOC for chronic risk = 1

[EECs and RQs ¹									
NOAEC	Short (Short Grass		Tall Grass		Broadleaf Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects		
(ppm)	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ		
256	83.02	0.32	38.05	0.15	46.70	0.18	5.19	0.02		

Size class not used for dietary risk quotients ¹LOC for chronic risk = 1

		ble G-15 0.1 lbs/ Upper		plicati	ons/sea	son			
	Chroni	c Avian			d Risk d RQs ¹		nts		
NOAEC	Short C	Grass	Tall	Grass	Broadleaf Plants/ Small Insects		See	s/Pods/ eds/ e Insects	
(ppm)	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	
256	80.34	0.31	36.82	0.14	45.19	0.18	5.02	0.02	

Size class not used for dietary risk quotients ¹LOC for chronic risk = 1

Mammals

Table G-16. T-REX Tropical Fruits Rally 40WSP/Nova 40W 0.25 lbs/A; 8 applications/season										
'	Upper Bound Kenaga									
	Chronic Mammalian Dietary Based Risk Quotients									
	EECs and RQs ¹									
NOAEC (ppm) ¹	Short Gr	ass	Tall Gra	Tall Grass			S	ts/Pods/ eeds/ e Insects		
	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ		
200	220.82	1.10 ²	101.21	0.51	124.21	0.62	13.80	0.07		

Size class not used for dietary risk quotients

1								
Chronic Mammalian Dose-Based Risk Quotients								
Size Class Adj	ted EECs and RQs							

Table G-16. T-REX Tropical Fruits Rally 40WSP/Nova 40W 0.25 lbs/A; 8 applications/season Upper Bound Kenaga											
(grams)	NOAEL	Short (Grass	Tall Grass		Broadleaf Plants/ Small Insects		Fruits/Pods/ Seeds/ Large Insects		Granivore	
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
. 15	35.17	210.54	5.99	96.50	2.74	118.43	3.37	13.16	0.37	2.92	0.08
35	28.45	145.51	5.11	66.69	2.34	81.85	2.88	9.09	0.32	2.02	0.07
1000	12.31	33.74	2.74	15.46	1.26	18.98	1.54	2.11	0.17	0.47	0.04

LOC for chronic risk = 1

Bolded values exceed LOC

Table G-17. Fruiting Vegetables and Other Crops	40WSP/Nova 40W
0.125 lbs/A; 4 applications/season; 10-Day Appli	ication Interval
Upper Bound Kenaga EECs	

	Chronic I	Aammalia	n Dietary I	Based R	isk Quo	tients						
	EECs and RQs ¹											
NOAEC ¹ (ppm)	Short C	Frass	Tall G	rass	Broad Plan Small I	its/	Fruits/Po- Seeds/ Large Inse EEC 5.71	s/				
	EEC RQ EEC RQ EEC RQ					EEC	RQ					
200	91.36	0.46	41.87	0.21	51.39	0.26	5.71	0.03				

Size class not used for dietary risk quotients

		Chro	nic Mai	nmalia	n Dose-	·Based R	isk Quotier	ıts			
						EECs a	nd RQs				
Size Class (grams)	Adjusted NOAEL	Short (Grass	Tall Grass Broadleaf Plants/ See Large 1		Broadleaf Plants/ Small Insects			Gran	ivore	
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	35.17	87.10	2.48 ^{1,2}	39.92	1.14	49.00	1.39	5.44	0.15	1.21	0.03
35	28.45	60.20	2.12	27.59 0.97		33.86	1.19	3.76	0.13	0.84	0.03
1000	12.31	13.96	1.13	6.40	0.52	7.85	0.64	0.87	0.07	0.19	0.02

¹LOC for chronic risk = 1
² Bolded values exceed LOC

I .	Table G-18. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 14-Day Application Interval Upper Bound Kenaga EECs								
NOAEC ¹	Chronic Mammalian	n Dietary Based EECs and R		ıts					
(ppm)	Short Grass	Tall Grass	Broadleaf Plants/ Small Insects	Fruits/Pods/ Seeds/ Large Insects					

Table G-18. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 14-Day Application Interval Upper Bound Kenaga EECs EEC RQ EEC **EEC** RQ RQ 38.05 83.02 0.42 0.19 | 46.70 | 0.23 5.19 0.03

Size class not used for dietary risk quotients

		Chron	ic Mamn	nalian I				ents			
					<u> </u>	EECs ar	ıd RQs				
Size Class (grams)	Adjusted NOAEL	Short	Grass	Tall (Grass	Pl	Broadleaf Fruits/Pods/ Plants/ Seeds/ Gr Small Insects Large Insects		Gran	anivore	
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	35.17	79.16	2.25 ^{1,2}	36.28	1.03	44.53	1.27	4.95	0.14	1.10	0.03
35	28.45	54.71	1.92	25.07	0.88	30.77	1.08	3.42	0.12	0.76	0.03
1000	12.31	12.68	1.03	5.81	0.47	7.13	0.58	0.79	0.06	0.18	0.01

¹LOC for chronic risk = 1 ² **Bolded** values exceed LOC

Table G-19. Artichokes Rally 40WSP	
0.1 lbs/A; 6 applications/season	
Upper Bound Kenaga EECs	

	Chronic	Mamm	alian D	ietary I	Based Ris	k Quotie	nts					
		EECs and RQs ¹										
NOAEC ¹ (ppm)	Short (Grass	Tall	Grass	Broadlea Small	of Plants/ Insects	Se	s/Pods/ eds/ Insects				
	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ				
200	80.34	0.40	36.82	0.18	45.19	0.23	5.02	0.03				

Size class not used for dietary risk quotients

	Chronic Mammalian Dose-Based Risk Quotients											
						EECs a	nd RQ	s				
Size Class (grams)	Adjusted NOAEL	Short	Grass	Tall Grass		Broadleaf Plants/ Small Insects		Se	ts/Pods/ eeds/ e Insects	Granivore		
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	
15	35.17	76.59	2.18 ^{1,2}	35.11	1.00	43.08	1.23	4.79	0.14	1.06	0.03	
35	28.45	52.94	1.86	24.26	0.85	29.78	1.05	3.31	0.12	0.74	0.03	
1000	12.31	12.27	1.00	5.63	0.46	6.90	0.56	0.77	0.06	0.17	0.01	

¹LOC for chronic risk = 1

² Bolded values exceed LOC

Mean Kenaga values

Birds

	Table G-20	0.25	lbs/A; Mear	8 applie 1 Kenag	cations a EEC	s/season		40W				
EECs and RQs												
Size Class (grams)	Adjusted LD50	Short	Short Grass Tall Grass EEC RQ ^{1,2} EEC RC		Frass		of Plants/ Insects	Fruits/Pods/ Seeds/ Large Insects				
		EEC			RQ	EEC	RQ	EEC	RQ			
20	358.77	89.16	0.249	37.76	0.11	47.20	0.132	7.34	0.020			
100	456.74	50.84	0.111	21.53	0.05	26.91	0.059	4.19	0.009			
1000	645.16	22.68	0.035	9.61	0.06	12.01	0.019	1.87	0.003			

 $^{^{1}}$ LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1 2 **Bolded** values exceed LOC

Tab	le G-21. Fruiti 0.125 lbs/A;	4 applicat	tions/se: Mean K	ason; 10 enaga I	Day A	Applicat	ion Int		40W
	A	cute Avia	in Dose-			and RQ			
Size Class (grams)	Adjusted LD50	Short Grass		Tall (Broad Plan Small I	dleaf nts/		its/Pods/ Seeds/ ge Insects
		EEC	RQ ^{1,2}	EEC	RQ	EEC	RQ	EEC	RQ
20	358.77	36.89	0.103	15.62	0.044	19.53	0.054	3.04	0.008
100	456.74	21.03 0.046		8.91	0.020	11.13	0.024	1.73	0.004
1000	645.16	9.38	0.015	3.97	0.006	4.97	0.008	0.77	0.001

¹LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

² **Bolded** values exceed LOC

Table	e G-22. Fruiti	ng Vegetables and Other Crops Rally 40WSP/Nova 40W						
	0.125 lbs/A; 4 applications/season; 14-Day Application Interval							
	Mean Kenaga EECs							
	A	cute Avian Dose-Based Risk Quotients						
Size Class	Size Class Adjusted EECs and RQs							

Table G-22. Fruiting Vegetables and Other Crops Rally 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 14-Day Application Interval

Mean Kenaga EECs Acute Avian Dose-Based Risk Quotients LD50 (grams) Broadleaf Fruits/Pods/ **Short Grass Tall Grass** Plants/ Seeds/ **Small Insects Large Insects** RQ^1 EEC **EEC** EEC RQ EEC RQ RQ 0.008 33.52 0.093 0.040 17.75 0.049 2.76 20 358.77 14.20 0.018 10.12 0.022 1.57 0.003 100 456.74 19.11 0.042 8.09 1000 645.16 8.53 0.013 3.61 0.006 4.51 0.007 0.70 0.001

 $^{^{1}}$ LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

·			23. Arti 5/A; 6 aj Mean K	pplication	ons/sea							
	Acute Avian Dose-Based Risk Quotients											
	EECs and RQs											
Size Class (grams)	Adjusted LD50	Short Grass		Tall (Grass	Broad Plai Small I	ıts/		its/Pods/ Seeds/ ge Insects			
-		EEC	RQ ¹	EEC	RQ	EEC	RQ	EEC	RQ			
20	358.77	32.44	0.090	13.74	0.038	17.17	0.048	2.67	0.007			
100	456.74	18.49	0.040	7.83	0.017	9.79	0.021	1.52	0.003			
1000	645.16	8.25	0.013	3.49	0.005	4.37	0.007	0.68	0.001			

 $^{^{1}}$ LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

Mammals

	Table G-24. T-REX Tropical Fruits Rally 40WSP/Nova 40W 0.25 lbs/A; 8 applications/season Mean Kenaga EECs Acute Mammalian Dose-Based Risk Quotients											
Size Class (grams) Adjusted LD50 ² Short Grass Tall Grass Broadleaf Plants/ Seeds/ Small Insects Large Inse								ds/	Gran	nivore		
		EEC	RQ ^{1,2}	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	
15	1461.56	74.30	0.051	31.47	0.022	39.33	0.027	6.12	0.004	1.35	<0.01	
35	1182.56	51.62	0.044	21.86	0.018	27.33	0.023	4.25	0.004	0.97	<0.01	
1000	511.49	11.73	0.023	4.97	0.010	6.21	0.012	0.97	0.002	0.19	< 0.01	

 $^{^{1}}$ LOC for acute risk = 0.5, acute restricted use = 0.2, acute endangered species = 0.1

Chronic

Mammals

).25 lbs/ <i>A</i> Me	opical Fruit A; 8 applicat ean Kenaga an Dietary l	ions/sea EECs	ason	· .	0W	
EECs and RQs ¹								
NOAEC (ppm) ¹	Short	Short Grass		iss	Pla	dleaf nts/ Insects	Fruits/P Seed Large In	s/
	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
200	78.21	0.391	33.12	0.166	41.40	0.207	6.44	0.032

Size class not used for dietary risk quotients

		Chro	nic Mam	malian		· · · · · · · · · · · · · · · · · · ·		ients			
Size Class (grams)	Adjusted NOAEL	Shor	t Grass	Tall (Tall Grass		EECs and RQs Broadleaf Plants/ Small Insects		s/Pods/ eds/ Insects	Granivore	
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	35.17	74.30	2.1131-3	31.47	0.895	39.33	1.119	6.12	0.174	1.35	0.04
35	28.45	51.62	1.814	21.86	0.768	27.33	0.960	4.25	0.149	0.97	0.03
1000	12.31	11.73	0.953	4.97	0.404	6.21	0.505	0.97	0.079	0.19	0.02

¹LOC for chronic risk = 1 ² **Bolded** values exceed LOC

Table G-26. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 10-Day Application Interval Mean Kenaga EECs

	Chronic Ma	mmalian	Dietary I	Based R	lisk Qu	iotients							
		EECs and RQs ¹											
NOAEC ¹ (ppm)	Short	Grass	Tall G	Frass	Pla Sn	dleaf nts/ nall ects	Fruits/I Seed Large I	ls/					
	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ					
200	32.36	0.162	13.70	0.069	17.13	0.086	2.66	0.013					

Size class not used for dietary risk quotients

	. ,	Chronic Ma	mmalian Dose	-Based Risk Quotier	ıts	
Size Class	Adjusted			EECs and RQs		
(grams)	NOAEL	Short Grass	Tall Grass	Broadleaf Plants/ Small Insects	Fruits/Pods/ Seeds/ Large Insects	Granivore

Table G-26. Fi	ruiting Vegetables and Other Crops 40WSP/Nova 40W
0.125 lbs/A;	4 applications/season; 10-Day Application Interval

Mean Kenaga EECs

		EEC	RQ	EEC	RQ	EEC	RQ_	EEC	RQ	EEC	RQ
15	35.17	30.74	0.874	13.02	0.370	16.27	0.463	2.53	0.072	0.56	0.02
35	28.45	21.36	0.751	9.04	0.318	11.31	0.397	1.76	0.062	0.40	0.01
1000	12.31	4.85	0.394	2.06	0.167	2.57	0.209	0.40	0.032	0.08	0.01

¹LOC for chronic risk = 1

Table G-27. Fruiting Vegetables and Other Crops 40WSP/Nova 40W 0.125 lbs/A; 4 applications/season; 14-Day Application Interval Mean Kenaga EECs

	Chron	<u>ic Mamma</u>	lian Diet	ary Bas	ed Risk	Quotien	its	
			E	ECs an	d RQs ¹			
NOAEC ¹ (ppm)	Short	Grass	Tall (Grass	Broad Plan Small I	its/	See	/Pods/ eds/ Insects
	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
200	29.40	0.0147	12.45	0.062	15.57	0.078	2.42	0.012

Size class not used for dietary risk quotients

	Chronic Mammalian Dose-Based Risk Quotients										
Size Class (grams)	Adjusted NOAEL	Shor	t Grass	Tall G	Tall Grass		ECs and RQs Broadleaf Plants/ Small Insects		s/Pods/ eeds/ e Insects	Granivore	
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ
15	35.17	27.93	0.794	11.83	0.336	14.79	0.421	2.30	0.065	0.51	0.01
35	28.45	19.41	0.682	8.22	0.289	10.27	0.361	1.60	0.056	0.36	0.01
1000	12.31	4.41	0.358	1.87	0.152	2.34	0.190	0.36	0.030	0.07	0.01

¹LOC for chronic risk = 1

			28. Artic s/A; 6 ap Mean Ke	plication	ıs/seasoı				
	Chro	nic Mamm		tary Bas EECs and		Quotient	s		
NOAEC ¹ (ppm)	Short Grass			Grass	Bro: Pla	adleaf ants/ Insects	Fruits/Pods/ Seeds/ Large Insects		
	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	
200	28.45	0.142	12.05	0.060	15.06	0.075	2.34	0.012	

Size class not used for dietary risk quotients

Table G-28. Artichokes Rally 40WSP 0.1 lbs/A; 6 applications/season Mean Kenaga EECs

Chronic Mammalian Dose-Based Risk Quotients

		Chron	ic Man	ппапап	Dose-Da	iseu KI	sk Quo	Hents_					
		EECs and RQs											
Size Class (grams)	Adjusted NOAEL	Short	Grass	Tall	Tall Grass		Broadleaf Plants/ Small Insects		/Pods/ eds/ Insects	Granivore			
		EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ	EEC	RQ		
15	35.17	27.03	0.769	11.45	0.326	14.31	0.407	2.23	0.063	0.49	0.01		
35	28.45	18.78	0.660	7.95	0.280	9.94	0.349	1.55	0.054	0.35	0.01		
1000	12.31	4.27	0.347	1.81	0.147	2.26	0.184	0.35	0.029	0.07	0.01		

¹LOC for chronic risk = 1

TEXT SEARCHABLE DOCUMENT

Appendix I. Ecotoxicity and Environmental Fate Bibliography

2068738

Bibliography

63-11 Oct/Water partition Coef.

MRID

Citation Reference

00162541 Jacobson, A. (1986) Octanol-water Partition Coefficient of RH-3866, RH-9090, RH-9089 and Triazole: Technical Report No. 31H-86-12. Unpublished study prepared by Rohm and Haas Co. 48 p.

71-1 Avian Single Dose Oral Toxicity

MRID

Citation Reference

00144286

Fletcher, D. (1984) Acute Single Oral Dose LD50 Study with RH-53, 866 Technical in Bobwhite Quail: Final Report: BLAL No. 83 QD 36. Unpublished Rohm and Haas Report #84RC-14 prepared by Bio- Life Assoc., Ltd. 49 p.

71-2 Avian Dietary Toxicity

MRID

Citation Reference

Fletcher, D. (1984) 8-Day Dietary LC50 Study with Rh-53,866 Technical in Bobwhite Quail: Final Report: BLAL No. 83 QC 38. Unpublished Rohm and Haas Report #84RC-16 prepared by Bio-Life Assoc. Ltd. 40 p.

Fletcher, D. (1984) 8-Day Dietary LC50 Study with RH-53,866 Technical in Mallard Ducklings: Final Report: BLAL No. 83 DC 39. Unpublished Rohm and Haas Report #84RC-15 prepared by Bio-Life Assoc., Ltd. 40 p.

71-4 Avian Reproduction

MRID

Citation Reference

43087901

Pedersen, C.; Lesar, C. (1993) RH-3866 Technical (Myclobutanil): Toxicity and Reproduction Study in Bobwhite Quail: Lab Project Nos. 111/010/07, 92RC/0188. Unpublished study prepared by Bio-Life Associates, Ltd. 475 p.

43087902	Pedersen, C.; Lesar, C.; DuCharme, D. (1993) RH-3866 Technical (Myclobutanil): Toxicity and Reproduction Study in Mallard Ducks: Lab Project Number: 111/011/08: 92RC/0189. Unpublished study prepared by Bio-Life Associates, Ltd. 521 p.
43402001	Pedersen, C.; Lesar, C. (1994) RH-3866 Technical (Myclobutanil): Toxicity and Reproduction Study in Bobwhite Quail: Lab Project Number: 111/010/07: 92RC/0188B. Unpublished study prepared by Bio-Life Associates, Ltd. 480 p.

72-1 Acute Toxicity to Freshwater Fish

MRID	Citation Reference
00141677	Cohle, P.; McAllister, W. (1984) Acute Toxicity of RH-53,866 to Rainbow Trout: Final Static Bioassay Report #30726. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 51 p.
00144285	McAllister, W.; Cohle, P. (1984) Acute Toxicity of RH-53,866 to Bluegill Sunfish: Final Static Bioassay Report #30725. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 51 p.

72-2 Acute Toxicity to Freshwater Invertebrates

MRID Citation Reference	
00141678 Burgess, D.; Forbis, A. (1984) Acute Toxicity of RH-53,866 to I nia magna: Final Report #30727. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 36 p.	

72-3 Acute Toxicity to Estuarine/Marine Organisms

MRID	Citation Reference
42747901	Dionne, E. (1991) RH-3866 TechnicalAcute Toxicity to Eastern Oysters (Crassostrea virginica) Under Flow-Through Conditions: Final Report: Lab Project Number: 91-6-3784: 90RC-0215: 86.1190.6121.504. Unpublished study prepared by Springborn Labs, Inc. 66 p.
42747902	Sousa, J. (1991) RH-3866 TechnicalAcute Toxicity to Mysid Shrimp (Mysidopsis bahia) Under Flow-Through Conditions: Final Report: Lab Project Number: 91-6-3797: 90RC-0214: 86.1190.6120.515.

Unpublished study prepared by Springborn Labs, Inc. 81 p.

42747903 Sousa, J. (1991) RH-3866 Technical--Acute Toxicity to Sheepshead Minnow (Cyprinodon variegatus) Under Flow-Through Conditions: Final Report: Lab Project Number: 91-5-3764: 90RC-0213: 86.1190.6119.505. Unpublished study prepared by Springborn Labs, Inc. 70 p.

72-4 Fish Early Life Stage/Aquatic Invertebrate Life Cycle Study

MRID	Citation Reference
00164986	McAllister, W.; McLain, T.; Seidel, A.; et al. (1986) Early Life Stage Toxicity of RH-3866 to Fathead Minnow (Pimephales promelas) in a Flow-through System: Report No. 34538: Final Report. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 33 p.
40409201	McAllister, W. (1987) Early Life Stage Toxicity of RH-3866 to Fathead Minnow (Pimephales promelas) in a Flow-through System: Rept. No. 34538. Unpublished supplemental study prepared by Analytical Bio-Chemistry Laboratories, Inc. 72 p.
40480401	Milligan, D. (1988) Supplement to the Early Life Stage Toxicity of RH-3866 to Fathead Minnow (Pimephales promelas) in a Flow-through System: Laboratory Project ID 86RC-0061B. Unpublished study prepared by Rohm and Haas Company and Analytical Bio-Chemistry Labs. 10 p.

81-1 Acute oral toxicity in mammals

MRID	Citation Reference
00165239	Romanello, A. (1986) Acute Oral LD50, Definitive, Mice: RH-53,866 Technical: Report No. 85R 0247. Unpublished study prepared by Rohm & Haas Co. 4 p
00141662	Krzywicki, K.; Morrison, R. (1984) Acute Oral LD50, Definitive: Rats: [RH-53,866 Technical]: Final Report: Report Nos. 84R 063A and 84R 063B. Unpublished study prepared by Rohm and Haas Co. 13 p.
47092603	Kuhn, J.O. (2007) Fludioxonil/Mefenoxam/Azoxystrobin/Myclobutanil FS (015.29/040.7/091.63/106.7) (A14911H) — Acute Oral Toxicity Study in Rats. Study Number 10416-06. Stillmeadow, Inc., 12852 Park One Drive, Sugar Land, TX 77478. January 29, 2007.

45381001	Parno, J.R., Craig, L.P. & Eberly, S.L. XF-97097 (Systhane Sulfur Dust) Acute Oral Toxicity Study in Male and Female Rats. Protocol No. 97P-143; Report No. 97R-143. Unpublished study prepared by Rohm and Haas Company Toxicology Department, Spring House, PA 19477-0904. Final Report Date: August 29, 1997.
45218401	Craig, L.; Parno, J. (1997) Systhane 20EW: Acute Oral Toxicity Study in Male and Female Rats: Lab Project Number: 96P-013: 96R-013A. Unpublished study prepared by Rohm and Haas Company. 24 p.
45056903	Moore, G. (2000) Acute Oral Toxicity Study in Rats: Chemsico Fungicide Concentrate M6: Lab Project Number: 8611: P320. Unpublished study prepared by Product Safety Labs. 20 p. {OPPTS 870.1100}
442652-01	Cerven, D. (1997) Single Dose Oral Toxicity in Rats/LD 50 in Rats: S-6640 (Fertilizer Plus Fungicide XI): Lab Project Number: 67-04 R/A: MB 96-5268.01. Unpublished study prepared by MB Research Lab., Inc. 12 p.
46886701	Merkel, D.J. (2005). GF-1480: Acute Oral Toxicity Up and Down Procedure in Rats. Product Safety Laboratories, Dayton, NJ. Laboratory Study No. 15761. Dow Study No. 040323. Study completion date: January 4, 2005. 26 p. Unpublished.
40149003	Romanello, A.; Krzywicki, K.; Hazelton, G.; et al. (1986) RH-0611 WP FungicideAcute Toxicity Testing (Systhane MZ): Lab Project No.: 86R-0086. Unpublished compilation prepared by Rohm and Haas Co. 25 p.
44155803	Kuhn, J. (1996) Acute Oral Toxicity Study in Rats with 1.55% Myclobutanil/2.5% Permethrin Concentrate: Final Report: Lab Project Number: 2870-96: S9-FF81-1.U7. Unpublished study prepared by Stillmeadow, Inc. 15 p.
164467	Romanello, A. (1986) Toxicity Report: Systhane 60DF Fungicide: [Acute Oral LD50: Acute Dermal LD50: Acute Eye Irritation]. Unpublished study prepared by Rohm and Haas Co. 10 p.
00164468	Romanello, A. (1986) Toxicity Report: Systhane 60DF Fungicide: [Acute Oral LD50: Acute Dermal LD50]. Unpublished study prepared by Rohm and Haas Co. 7 p.

83-1 Chronic Toxicity

MRID	Citation Reference
00165247	Shellenberger, T.; Billups, L. (1986) Chronic Toxicity and Onco-

genicity Study with RH 3866 in Rats: Final Report: Project No. 8342. Unpublished Rohm & Haas's Project No. 85RC-61 prepared by Tegeris Laboratories, Inc. 3536 p.

83-4 2-generation repro.-rat

132-1

MRID

40489302

MRID	Citation Reference
00143766	Brown U. (1985) Two-Generation Reproduction Study with RH-53,866 Technical in Rats: Protocol No. 83P-364, Report No. 84R-117. Unpublished study prepared by Research Pathology Services, Inc. 78 p.
00149581	Costlow, R.; Harris, J. (1985) RH-53,866: Two Generation Reproduction Study in Rats: Report No. 84R-117. Unpublished study pre- pared by Rohm and Haas Co. 225 p.
121-1 Pl	hytotoxicity
MRID	Citation Reference
43087904	Batra, R. (1994) RH-3866 (Myclobutanil) Single Application Turf Residue Decline: Lab Project Number: TR/34/93/125. Unpublished study prepared by Centre Analytical Lab., Rohm and Haas Co., Crop Management Strategies, Inc. 273 p.
123-2 A	quatic plant growth
MRID	Citation Reference
41984801	Hoberg, J. (1991) RH-3866 TechnicalToxicity to the Freshwater Green Alga, Selenastrum capricornutum: Lab Project Number: 91-2-3641: 90RC-0195: 86.0990.6118.430. Unpublished study prepared by Springborn Laboratories, Inc. 66 p.

Dissipation of Dislodgeable Foliar & Soil Residues

Citation Reference

Zogorski, W. (1987) Determination of Dislodgeable Residues of

	Myclobutanil on Grape Foliage: Report No. 31S-87-10. Unpublished study performed by Rohm and Haas Company. 455 p.
44952901	Meyer, A. (1999) Determination of Transferable Residues on Turf Treated with Myclobutanil: Lab Project Number: TR 34-99-109: 34-99- 67: 34P-99-05A. Unpublished study prepared by Rohm and Haas Company. 454 p. {OPPTS 875.2100}

141-1 Honey bee acute contact

MRID	Citation Reference
00144289	Atkins, E. (1983) Letter sent to I. Morici dated Nov 9, 1983: [Bee adult toxicity dusting tests with RH-3866, 81.1% ai technical]. Prepared by Univ. of CaliforniaRiverside, Dept. of Entomology. 52 p.

161-1 Hydrolysis

MRID	Citation Reference

00141679	Allen, S. (1984) A Hydrolysis Study of RH-3866: Technical Report No. 310-84-04. Unpublished study prepared by Rohm and Haas Co. 103 p.

161-2 Photodegradation-water

MRID	Citation Reference
40319801	Ackermann, I. (1986) Supplement to Aqueous Photolysis of RH-3866: Laboratory Project ID: 31H-86-08. Unpublished study prepared by Rohm and Haas Co. 5 p.
40528801	Ackermann, I. (1987) Response to EAB Request for Additional Data: EAB Review #70947, Dated December 22, 1987: Addendum to Aqueous Photolysis Study TR No. 31H-86-08. Unpublished study prepared by Rohm and Haas Co. 7 p.
40641501	Ackermann, I.; Streelman, D. (1988) Supplemental Information for Aqueous Photolysis Study No. 31H-86-08: Comparison of the Light Source Intensity to Sunlight: Project ID: DRS-88-16. Unpublished study prepared by Rohm and Haas Co. 6 p.

161-3 Photodegradation-soil

MRID	Citation Reference
00164988	Nelson, S. (1985) Laboratory Soil Photolysis Study of RH-3866: Technical Report No. 310-85-08. Unpublished study prepared by Rohm and Haas Co., Spring House Research Laboratories. 145 p.

162-1 Aerobic soil metabolism

MRID	Citation Reference
00164561	Ackermann, I. (1986) Addendum to RH-3866 Soil Metabolism Study (TR No. 310-84-14): Project No. 31H-86-15. Unpublished study prepared by Rohm and Haas, Spring House Research Laboratories. 73 p.

162-2 Anaerobic soil metabolism

MRID	Citation Reference
00141680	Ackermann, I. (1984) RH-3866 Laboratory Soil Metabolism: Technical Report No. 310-84-14. Unpublished study prepared by Rohm and Haas Co. 535 p.
00164987	Rohm and Haas Co. (1986) Environmental Fate: Rally Fungicide (RH-3866): [Summary and Discussion]. Unpublished study. 17 p.

163-1 Leach/adsorp/desorption

MRID	Citation Reference				
00141682	Allen, S. (1984) The Adsorptive and Desorptive Properties of RH- 3866 on Soils: Technical Report No. 310-84-05. Unpublished study prepared by Rohm and Haas Co. 145 p.				
00143770	Ollinger, J. (1985) Letter sent to K. McCarthy dated May 15. 1985: RH-3866 environmental fate review. Prepared by Rohm and Haas Co. 6 p.				
00164987	Rohm and Haas Co. (1986) Environmental Fate: Rally Fungicide (RH-3866): [Summary and Discussion]. Unpublished study. 17 p.				

164-1 Terrestrial field dissipation

MRID	Citation Reference				
00164563	Deakyne, R.; Burnett, T.; Brackett, C.; et al. (1986) RH-3866 Soil Residue Decline Study: Project No. 310-86-05. Unpublished study prepared by Rohm and Haas, Spring House Research Laboratories. 417 p.				
00164987	Rohm and Haas Co. (1986) Environmental Fate: Rally Fungicide (RH-3866): [Summary and Discussion]. Unpublished study. 17 p.				
40319802	Deakyne, R.; Burnett, T.; Brackett, C.; et al. (1986) Addendum to RH-3866 Soil Residue Decline Study: Report No. 310-86-05. Unpublished study prepared by Rohm and Haas Co. 4 p.				
42181101	Deakyne, R.; Stavinski, S. (1990) Myclobutanil California Field Soil Dissipation Study: Lab Project Number: RH 34-90-15. Unpublished study prepared by Rohm and Haas in cooperation with Pan-Ag. Labs, Inc.; QC, Inc. and Lancaster Labs, Inc. 1550 p.				

171-5 Reduction of residues

MRID	Citation Reference			
41833402	Stavinski, S.; Brackett, C.; Burnett, T. et al. (1986) RH-3866: Residue Decline Data for Pears: Lab Project Number: 31A-86-60. Unpublished study prepared by Rhom & Haas Co. 141 p.			
171-4C	Magnitude of the Residue [by commodity]			
MRID	Citation Reference			
00143768	Nelson, S. (1984) Residue Decline Study of RH-3866 in Apples: Technical Report No. 310-84-28. Unpublished study prepared by Rohm and Haas Co. 473 p.			
00164978	Deakyne, R.; Brackett, C.; Burnett, T.; et al. (1986) RH-3866 Residue Decline Studies in Apples: Analytical Report No. 31A-86-70. Unpublished study prepared by Rohm and Haas Co. 105 p.			
00164983	Brackett, C.; Burnett, T.; Deakyne, R.; et al. (1986) Letter sent to W.Hurt dated Aug 5, 1986: RH-3866 residue decline study in grapes: Analytical report no. 31A-86-50. Prepared by Rohm and Haas Co. 169 p.			
00164984	Deakyne, R.; Brackett, C.; Burnett, T.; et al. (1986) Letter sent to			

46467304	Young, A.; Sheets, S.; Elcock, L. (2005) A Two-Generation Reproductive Toxicity Study in the Wistar Rat with 1,2,4-Triazole. Project Number: 03/R72/PZ, 201220, TZ521802. Unpublished study prepared by Bayer Corp. 1570 p.
MRID	Citation Reference
870.3800	Reproduction and fertility effects
41085501	Deakyne, R. (1989?) RH-3866 Residue Decline Studies in Cantaloupe: Rept. No. 31A-87-33. Unpublished study prepared by Rohm and Haas Co. 118 p.
40791610	Stavinski, S.; Brackett, C.; Burnett, T.; et al. (1988) RH-3866 Residue Data and Half-life of Decline for Plum, RAR 87-0201: Analytical Report No. 34A-88-37. Unpublished study prepared by Craven Laboratories, Inc., and Rohm and Haas Co. 29 p.
40791606	Stavinski, S.; Brackett, C.; Burnett, T.; et al. (1987) RH-3866 Residue Data and Half-life of Decline for Cherry, RAR 87-0209, and Peach, RAR 87-0172: Analytical Report No. 34A-88-18. Unpu-blished study prepared by Craven Laboratories, Inc., and Rohm and Haas Co. 55 p.
40791605	Stavinski, S.; Brackett, C.; Burnett, T.; et al. (1988) RH-3866 Residue Data and Half-life of Decline for Peach, RAR 87-0243: Analytical Report No. 34A-88-33. Unpublished study prepared by Craven Laboratories, Inc., and Rohm and Haas Co. 36 p.
00165257	Brackett, C.; Burnett, T.; Deakyne, R.; et al. (1986) Letter sent to W. Hurt dated Aug 7, 1986: RH-3866 residue decline studies in apples: Analytical Report No. 31A-86-51. Prepared by Rohm and Haas Co. 127 p.
	W.Hurt dated Oct 13, 1986: RH-3866 Residue decline studies in grapes: Technical report no. 31A-86-65. Prepared by Rohm and Haas Co. 196 p.

Non-Guideline Study

MRID	Citation Reference
00147216	Lynch, W. (1985) Letter sent to W. Hurt dated Mar 27, 1985: RH- 3866: Adverse effects noted in rat testes in chronic toxicity and reproduction studies and in the rate of growth of offspring in the rat reproduction study. Prepared by Rohm & Haas Co. 8 p.

00147217	Lynch, W. (1985) Letter sent to W. Hurt dated Apr 16, 1985: RH- 3866-NOEL for testicular effects in the rat reproduction study. Prepared by Rohm & Haas Co. 1 p.
41833401	Costlow, R. (1991) Response of the Rohm and Haas Co. to the U.S. EPA Ecological Effects Branch Review of Myclobutanil () for Turf and Ornamental Use: Lab Project Number: RDC-91-020. Unpublished study prepared by Rohm and Haas Co. 11 p.
42004201	Reinert, K. (1991) Response to USEPA EEB Review: Almond Nuts and Hulls Tolerance Petition: Lab Project Number: 91R-1023. Unpublished study prepared by Rohm & Haas Co. 26 p.
42004202	Reinert, K. (1991) Response to USEPA EEB Review: Pome Fruit Tolerance Petition for Myclobutanil: Lab Project Number: 91R- 1024. Unpublished study prepared by Rohm & Haas Co. 28 p.

į

TEXT SEARCHABLE DOCUMENT

Appendix H Endangered Species LOCATES

2068771

Aggregated Taxa Count by State for All Selected

No species exclusions.

Minimum of 1 Acre All Medium Types Reported

eggplant, okra, peppers, bell, peppers, chile (all peppers - excluding bell), pimientos, avocados, avocados (PR), bananas, bananas (PR), citron (PR), citrus fruit, all, citrus fruit, other, fruits / other (PR), fruits and coconuts (PR), grapefruit, grapefruit (PR), guavas, kearly citrus, kiwifruit, kumquats, lemons, lemons and limes (PR), limes, mangoes, mangoes (PR), nectarines, oranges (PR), oranges, all, oranges, other, oranges, valencia, papayas, papayas (PR), passion fruit, pineapples (PR), pineapples harvested, pineapples not harvested, plantains (PR), pomegranates, soursops (PR), tangelos, tangerines, temples, amaranth, celery, escarole and endive, lettuce, all, lettuce, head, lettuce, leaf, lettuce, romaine, parsley, rhubarb, artichokes

AL, AK, AZ, AR, CA, CO, CT, DE, DC, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA, ME, MD, MA, MI, MN, MS, MO, MT, NE, NV, NH, NJ, NM, NY, NC, ND, OH, OK, OR, PA, PR, RI, SC, SD, TN, TX, UT, VT, VA, WA, WV, WI, WY

	Amphibian	Bird	Fish	Reptile
AL	2	3	15	5
AR	0	2	2	0
ΑZ	2	7	18	2
CA	6	15	30	. 8
CO	0	2	6	0
CT	0	2	1	. 1
DE	0	1	. 1	1
FL	1	9	4	10
GA	1	4	7	2
HI	0	32	0	2
IA	. 0	2	2	0
ID	0	0	7	0
IL	0	2	1	0
IN	0	1	0	1
KS	. 0	3	4	0
KY	0	6	4	0
LA	0	4	2	7

Page 1 of 12

	Amphibian	Bird	Fish	Reptile
MA	0	3	1	2
MD	0	1	2	1
ME	0	2	2	0
ΜI	0	2	0	1
MN	0	1	0	. 0
MO	0	2	5	0
MS	1	5	3	7
MT	0	3	4	0
NC	0	4	4	5
ND	0	3	1	0
NE	0 -	3	2	0
NJ	0	2	1	1
NM	1	6	13	1
NV	· 0	2	15	1
NY	. 0	2	1	1
OH	0	1	.1	2
OK	. 0	5	4	0
OR	0	4	19	0
PA	0	1	0	1
PR	3	9	0	7
RI	. 0	1	. 1	. 0
SC	1	4	1	5
SD	0	3	2	0
TN	0	3	14	0
TX	4	12	7	6
UT	0	2	. 8	1
VA	1	. 2	7	1
WA	0	4	19	0
WI	0	3	0	0
WV	1	0	0	0

9/27/2007 9:04:07 AM Ver. 2.10.3

Am	phibian	Bird	Fish	Reptile		
Counties:	108	818	569	326		
States:	12	45	. 39	26		
Species:	20	77	128	33		
258	species	s:				
'Akepa, Ha				Loxops coccineus coccineus	Bird	Terrestrial
'Akepa, M	aui			Loxops coccineus ochraceus	Bird	Terrestrial
'Akia Loa,	Kauai (H	emignathus	procerus)	Hemignathus procerus	Bird	Terrestrial
'Akia Pola	'au (Hem	ignathus mi	unroi)	Hemignathus munroi	Bird	Terrestrial
Albatross,	Short-tai	led		Phoebastria (=Diomedea) albatrus	Bird	Terrestrial, Saltwate
Blackbird,	Yellow-s	houldered		Agelaius xanthomus	Bird	Terrestrial
Boa, Mona	a			Epicrates monensis monensis	Reptile	Terrestrial
Boa, Puer	to Rican			Epicrates inornatus	Reptile	Terrestrial
Bobwhite,	Masked			Colinus virginianus ridgwayi	Bird	Terrestrial
Caracara,	Audubor	n's Crested		Polyborus plancus audubonii	Bird	Terrestrial
Catfish, Y	aqui			Ictalurus pricei	Fish	Freshwater
Cavetish,	Alabama			Speoplatyrhinus poulsoni	Fish	Freshwater
Cavefish,	Ozark			Amblyopsis rosae	Fish	Freshwater
Chub, Bor	nytail			Gila elegans	Fish	Freshwater
Chub, Chi	ihuahua			Gila nigrescens	Fish	Freshwater
Chub, Gila	a			Gila intermedia	Fish	Freshwater
Chub, Hu	mpback			Gila cypha	Fish	Freshwater
Chub, Hu	tton Tui			Gila bicolor ssp.	Fish	Freshwater
Chub, Mo	have Tui			Gila bicolor mohavensis	Fish	Freshwater
Chub, Ore	egon			Oregonichthys crameri	Fish	Freshwater
Chub, Ow	ens Tui			Gila bicolor snyderi	Fish	Freshwater
Chub, Sle	ender			Erimystax cahni	Fish	Freshwater
Chub, So	nora			Gila ditaenia	Fish	Freshwater
Chub, Sp	otfin			Erimonax monachus	Fish	Freshwater
Chub, Vir	gin River			Gila seminuda (=robusta)	Fish	Freshwater

9/27/2007 9:04:44 AM Ver. 2.10.3

Chub, Yaqui	Gila purpurea	Fish	Freshwater
Condor, California	Gymnogyps californianus	Bird	Terrestrial
Coot, Hawaiian (=Alae keo keo)	Fulica americana alai	Bird	Terrestrial
Coqui, Golden	Eleutherodactylus jasperi	Amphibian	Freshwater, Terrestrial
Crane, Mississippi Sandhill	Grus canadensis pulla	Bird	Terrestrial, Freshwater
Crane, Whooping	Grus americana	Bird	Terrestrial, Freshwater
Creeper, Hawaii	Oreomystis mana	Bird	Terrestrial
Creeper, Molokai (Kakawahie)	Paroreomyza flammea	Bird	Terrestrial
Creeper, Oahu (Alauwahio)	Paroreomyza maculata	Bird	Terrestrial
Crocodile, American	Crocodylus acutus	Reptile	Terrestrial, Freshwater
Crow, Hawaiian ('Alala)	Corvus hawaiiensis	Bird ·	Terrestrial
Cui-ui	Chasmistes cujus	Fish	Freshwater
Curlew, Eskimo	Numenius borealis	Bird	Terrestrial
Dace, Ash Meadows Speckled	Rhinichthys osculus nevadensis	Fish	Freshwater
Dace, Blackside	Phoxinus cumberlandensis	Fish	Freshwater
Dace, Moapa	Moapa coriacea	Fish	Freshwater
Darter, Amber	Percina antesella	Fish .	Freshwater
Darter, Bayou	Etheostoma rubrum	Fish	Freshwater
Darter, Bluemask (=jewel)	Etheostoma /	Fish	Freshwater
Darter, Boulder	Etheostoma wapiti	Fish	Freshwater
Darter, Cherokee	Etheostoma scotti	Fish	Freshwater
Darter, Duskytail	Etheostoma percnurum	Fish	Freshwater
Darter, Etowah	Etheostoma etowahae	Fish	Freshwater
Darter, Fountain	Etheostoma fonticola	Fish	Freshwater
Darter, Goldline	Percina aurolineata	Fish	Freshwater
Darter, Leopard	Percina pantherina	Fish	Freshwater
Darter, Maryland	Etheostoma sellare	Fish	Freshwater
Darter, Niangua	Etheostoma nianguae	Fish	Freshwater
Darter, Okaloosa	Etheostoma okaloosae	Fish	Freshwater
Darter, Relict	Etheostoma chienense	Fish	Freshwater

Amphibian	Bird	Fish	Reptile

Darter, Slackwater	Etheostoma boschungi	Fish	Freshwater
Darter, Snail	Percina tanasi	Fish	Freshwater
Darter, Vermilion	Etheostoma chermocki	Fish	Freshwater
Darter, Watercress	Etheostoma nuchale	Fish	Freshwater
Duck, Hawaiian (Koloa)	Anas wyvilliana	Bird	Freshwater, Terrestrial
Duck, Laysan	Anas laysanensis	Bird	Terrestrial, Freshwater
Elepaio, Oahu	Chasiempis sandwichensis ibidis	Bird	Terrestrial
Falcon, Northern Aplomado	Falco femoralis septentrionalis	Bird	Terrestrial
Finch, Laysan	Telespyza cantans	Bird	Terrestrial
Finch, Nihoa	Telespyza ultima	Bird	Terrestrial
Flycatcher, Southwestern Willow	Empidonax traillii extimus	Bird	Terrestrial
Frog, California Red-legged	Rana aurora draytonii	Amphibian	Terrestrial, Freshwater
Frog, Chiricahua Leopard	Rana chiricahuensis	Amphibian	Freshwater, Terrestrial
Frog, Dusky Gopher (Mississippi DPS)	Rana capito sevosa	Amphibian	Terrestrial, Freshwater
Frog, Mountain Yellow-legged	Gopherus agassizii	Amphibian	Terrestrial, Freshwater
Gambusia, Big Bend	Gambusia gaigei	Fish	Freshwater
Gambusia, Pecos	Gambusia nobilis	Fish	Freshwater
Gambusia, San Marcos	Gambusia georgei	Fish	Freshwater
Gecko, Monito	Sphaerodactylus micropithecus	Reptile	Terrestrial
Gnatcatcher, Coastal California	Polioptila californica californica	Bird	Terrestrial
Goby, Tidewater	Eucyclogobius newberryi	Fish	Freshwater
Goose, Hawaiian (Nene)	Branta (=Nesochen) sandvicensis	Bird	Terrestrial, Freshwater
Guajon	Eleutherodactylus cooki	Amphibian	Freshwater, Terrestrial
Hawk, Hawaiian (Io)	Buteo solitarius	Bird	Terrestrial
Hawk, Puerto Rican Broad-winged	Buteo platypterus brunnescens	Bird	Terrestrial
Hawk, Puerto Rican Sharp-shinned	Accipiter striatus venator	Bird	Terrestrial
Honeycreeper, Crested ('Akohekohe)	Palmeria dolei	Bird	Terrestrial
Iguana, Mona Ground	Cyclura stejnegeri	Reptile	Terrestrial
Kite, Everglade Snail	Rostrhamus sociabilis plumbeus	Bird	Terrestrial
Lizard, Blunt-nosed Leopard	Gambelia silus	Reptile	Terrestrial

	· ·		
Lizard, Coachella Valley Fringe-toed	Uma inornata	Reptile	Terrestrial
Lizard, Island Night	Xantusia riversiana	Reptile	Terrestrial
Logperch, Conasauga	Percina jenkinsi .	Fish	Freshwater
Logperch, Roanoke	Percina rex	Fish	Freshwater
Madtom, Neosho	Noturus placidus	Fish	Freshwater
Madtom, Pygmy	Noturus stanauli	Fish	Freshwater
Madtom, Scioto	Noturus trautmani	Fish	Freshwater
Madtom, Smoky	Noturus baileyi	Fish	Freshwater
Madtom, Yellowfin	Noturus flavipinnis	Fish	Freshwater
Millerbird, Nihoa	Acrocephalus familiaris kingi	Bird	Terrestrial
Minnow, Loach	Tiaroga cobitis	Fish	Freshwater
Minnow, Rio Grande Silvery	Hybognathus amarus	Fish	Freshwater
Moorhen, Hawaiian Common	Gallinula chloropus sandvicensis	Bird	Terrestrial
Murrelet, Marbled	Brachyramphus marmoratus marmoratus	Bird	Freshwater, Terrestrial, Saltwater
Nightjar, Puerto Rico	Caprimulgus noctitherus	Bird	Terrestrial
Nuku Pu'u	Hemignathus lucidus	Bird	Terrestrial
'O'o, Kauai (='A'a)	Moho braccatus	Bird	Terrestrial
'O'u (Honeycreeper)	Psittirostra psittacea	Bird	Terrestrial
Owl, Mexican Spotted	Strix occidentalis lucida	Bird	Terrestrial
Owl, Northern Spotted	Strix occidentalis caurina	Bird	Terrestrial
Palila	Loxioides bailleui	Bird	Terrestrial
Parrot, Puerto Rican	Amazona vittata	Bird	Terrestrial
Parrotbill, Maui	Pseudonestor xanthophrys	Bird	Terrestrial
Pelican, Brown	Pelecanus occidentalis	Bird	Terrestrial
Petrel, Hawaiian Dark-rumped	Pterodroma phaeopygia sandwichensis	Bird	Terrestrial
Pigeon, Puerto Rican Plain	Columba inornata wetmorei	Bird	Terrestrial
Plover, Piping	Charadrius melodus	Bird	Terrestrial
Plover, Western Snowy	Charadrius alexandrinus nivosus	Bird	Terrestrial
Poolfish, Pahrump (= Pahrump Killifish)	Empetrichthys latos	Fish	Freshwater
Po'ouli	Melamprosops phaeosoma	Bird	Terrestrial

Amphibian	Bird	Fish	Reptile
/ unprublan	Dila	1 1011	i iopini

Prairie-chicken, Attwater's Greater	Tympanuchus cupido attwateri	Bird	Terrestrial
Pupfish, Ash Meadows Amargosa	Cyprinodon nevadensis mionectes	Fish	Freshwater
Pupfish, Comanche Springs	Cyprinodon elegans	Fish	Freshwater
Pupfish, Desert	Cyprinodon macularius	Fish	Freshwater
Pupfish, Devils Hole	Cyprinodon diabolis	Fish	Freshwater
Pupfish, Leon Springs	Cyprinodon bovinus	Fish	Freshwater
Pupfish, Owens	Cyprinodon radiosus	Fish	Freshwater
Pupfish, Warm Springs	Cyprinodon nevadensis pectoralis	Fish	Freshwater
Pygmy-owl, Cactus Ferruginous	Glaucidium brasilianum cactorum	Bird	Terrestrial
Rail, California Clapper	Rallus longirostris obsoletus	Bird	Terrestrial
Rail, Light-footed Clapper	Rallus longirostris levipes	Bird	Terrestrial
Rail, Yuma Clapper	Rallus longirostris yumanensis	Bird	Terrestrial
Rattlesnake, New Mexican Ridge-nosed	Crotalus willardi obscurus	Reptile	Terrestrial
Salamander, Barton Springs	Eurycea sosorum	Amphibian	Freshwater, Terrestrial
Salamander, California Tiger	Ambystoma californiense	Amphibian	Terrestrial, Vernal pool
Salamander, Cheat Mountain	Plethodon nettingi	Amphibian	Freshwater, Terrestrial
Salamander, Desert Slender	Batrachoseps aridus	Amphibian	Freshwater, Terrestrial
Salamander, Flatwoods	Ambystoma cingulatum	Amphibian	Freshwater, Vernal pool, Terrestrial
Salamander, Red Hills	Phaeognathus hubrichti	Amphibian	Freshwater, Terrestrial
Salamander, San Marcos	Eurycea nana	Amphibian	Freshwater, Terrestrial
Salamander, Santa Cruz Long-toed	Ambystoma macrodactylum croceum	Amphibian	Freshwater, Vernal pool, Terrestrial
Salamander, Shenandoah	Plethodon shenandoah	Amphibian	Freshwater, Terrestrial
Salamander, Sonora Tiger	Ambystoma tigrinum stebbinsi	Amphibian	Vernal pool, Freshwater, Terrestrial
Salamander, Texas Blind	Typhlomolge rathbuni	Amphibian	Subterraneous, Freshwater
Salmon, Atlantic	Salmo salar	Fish	Brackish, Saltwater, Freshwater
Salmon, Chinook (California Coastal Run)	Oncorhynchus (=Salmo) tshawytscha	Fish	Freshwater, Saltwater, Brackish
Salmon, Chinook (Central Valley Fall Run)	Oncorhynchus (=Salmo) tshawytscha	Fish	Brackish, Freshwater, Saltwater
Salmon, Chinook (Central Valley Spring Run)	Oncorhynchus (=Salmo) tshawytscha	Fish	Brackish, Saltwater, Freshwater
Salmon, Chinook (Lower Columbia River)	Oncorhynchus (=Salmo) tshawytscha	Fish	Freshwater, Brackish, Saltwater
Salmon, Chinook (Puget Sound)	Oncorhynchus (=Salmo) tshawytscha	Fish	Freshwater, Brackish, Saltwater
• •			

9/27/2007 9:07:11 AM Ver. 2.10.3

Amphibian	Bird	Fish	Reptile
-----------	------	------	---------

9/27/2007 9:07:48 AM Ver. 2.10.3

Salmon, Chinook (Sacramento River Winter Re	ın)	Oncorhynchu	us (=Salmo) tshawytscha	Fişh	Saltwater, Freshwater, Brackish
Salmon, Chinook (Snake River Fall Run)	Oncorhynchus (=Salmo) tshawytscha	Fish	Freshwater, Saltwater,	Brackish	
Salmon, Chinook (Snake River spring/summer) Oncorhynchus (=Salmo) tshawytscha	Fish	Brackish, Saltwater, Fr	reshwater	
Salmon, Chinook (Upper Columbia River Sprin	g)	Oncorhynchi	us (=Salmo) tshawytscha	Fish	Freshwater, Saltwater, Brackish
Salmon, Chinook (Upper Willamette River)	Oncorhynchus (=Salmo) tshawytscha	Fish	Saltwater, Brackish, Fr	reshwater	
Salmon, Chum (Columbia River population)	Oncorhynchus (=Salmo) keta	Fish	Brackish, Freshwater,	Saltwater	
Salmon, Chum (Hood Canal Summer population	, , ,	Oncorhynchi	us (=Salmo) keta Fish	Freshwa	ater, Brackish, Saltwater
Salmon, Coho (Central California Coast population)	Oncorhynchus (=Salmo) kisutch	Fish	Saltwater, Brackish, F	reshwater	
Salmon, Coho (Southern OR/Northern CA Coa	ast)	Oncorhynchi	us (=Salmo) kisutch	Fish	Freshwater, Brackish, Saltwater
Salmon, Sockeye (Ozette Lake population)	Oncorhynchus (=Salmo) nerka	Fish	Saltwater, Freshwater,	Brackish	
Salmon, Sockeye (Snake River population)	Oncorhynchus (=Salmo) nerka	Fish	Brackish, Saltwater, F	reshwater	
Sawfish, Smalltooth	Pristis pectinata	Fish	Saltwater, Freshwater		
Scrub-Jay, Florida	Aphelocoma coerulescens	Bird	Terrestrial		
Sculpin, Pygmy	Cottus paulus (=pygmaeus)	Fish	Freshwater		
Sea turtle, green	Chelonia mydas	Reptile	Saltwater		
Sea turtle, hawksbill	Eretmochelys imbricata	Reptile	Saltwater		
Sea turtle, Kemp's ridley	Lepidochelys kempii	Reptile	Saltwater		
Sea turtle, leatherback	Dermochelys coriacea	Reptile	Saltwater		
Sea turtle, loggerhead	Caretta caretta	Reptile	Saltwater		-
Sea turtle, olive ridley	Lepidochelys olivacea	Reptile	Saltwater		
Shearwater, Newell's Townsend's	Puffinus auricularis newelli	Bird	Terrestrial, Saltwater		
Shiner, Arkansas River	Notropis girardi	Fish	Freshwater		
Shiner, Beautiful	Cyprinella formosa	Fish	Freshwater		
Shiner, Blue	Cyprinella caerulea	Fish	Freshwater		
Shiner, Cahaba	Notropis cahabae	Fish	Freshwater		
Shiner, Cape Fear	Notropis mekistocholas	Fish	Freshwater		
Shiner, Palezone	Notropis albizonatus	Fish	Freshwater		

Amphibian	Bird	Fish	Reptile
/ with the term	D.11 G	, 1011	

Shiner, Pecos Bluntnose	Notropis simus pecosensis	Fish	Freshwater
Shiner, Topeka	Notropis topeka (=tristis)	Fish	Freshwater
Shrike, San Clemente Loggerhead	Lanius ludovicianus mearnsi	Bird	Terrestrial
Silverside, Waccamaw	Menidia extensa	Fish	Freshwater
- · · · · · · · · · · · · · · · · · · ·		Reptile	Terrestrial
Skink, Blue-tailed Mole	Eumeces egregius lividus		
Skink, Sand	Neoseps reynoldsi	Reptile	Terrestrial
Smelt, Delta	Hypomesus transpacificus	Fish	Freshwater, Brackish
Snake, Atlantic Salt Marsh	Nerodia clarkii taeniata	Reptile	Saltwater, Terrestrial, Brackish
Snake, Concho Water	Nerodia paucimaculata	Reptile	Freshwater, Terrestrial
Snake, Eastern Indigo	Drymarchon corais couperi	Reptile	Terrestrial
Snake, Giant Garter	Thamnophis gigas	Reptile	Freshwater, Terrestrial
Snake, Lake Erie Water	Nerodia sipedon insularum	Reptile	Terrestrial, Freshwater
Snake, Northern Copperbelly Water	Nerodia erythrogaster neglecta	Reptile	Freshwater, Terrestrial
Snake, San Francisco Garter	Thamnophis sirtalis tetrataenia	Reptile	Freshwater, Terrestrial
Sparrow, Cape Sable Seaside	Ammodramus maritimus mirabilis	Bird	Terrestrial
Sparrow, Florida Grasshopper	Ammodramus savannarum floridanus	Bird	Terrestrial
Sparrow, San Clemente Sage	Amphispiza belli clementeae	Bird	Terrestrial
Spikedace	Meda fulgida	Fish	Freshwater
Spinedace, Little Colorado	Lepidomeda vittata	Fish	Freshwater
Spinedace, White River	Lepidomeda albivallis	Fish	Freshwater
Springfish, Railroad Valley	Crenichthys nevadae	Fish	Freshwater
Squawfish, Colorado	Ptychocheilus lucius	Fish	Freshwater
Starling, Ponape Mountain	Aplonis pelzelni	Bird	Terrestrial
Steelhead, (California Central Valley population	n) Oncorhynchus (=Salmo) mykiss	Fish	Brackish, Freshwater, Saltwater
Steelhead, (Central California Coast population	a) Oncorhynchus (-Salmo) mykies	Fish	Freshwater, Saltwater, Brackish
Steemeau, (Central California Coast population	ij Oncomynends (=oaimo, mykiss	1 1311	resilvator, batwater, blackish
Steelhead, (Lower Columbia River population)	Oncorhynchus (=Salmo) mykiss	Fish	Brackish, Freshwater, Saltwater
Steelhead, (Middle Columbia River population)	Oncorhynchus (=Salmo) mykiss	Fish	Freshwater, Saltwater, Brackish
Steelhead, (Northern California population)	Oncorhynchus (=Salmo) mykiss	Fish	Saltwater, Brackish, Freshwater
Steelhead, (Snake River Basin population)	Oncorhynchus (=Salmo) mykiss	Fish	Freshwater, Brackish, Saltwater

Amphibian Bird Fish Reptile

9/27/2007 9:09:02 AM Ver. 2.10.3

Steelhead, (South-Central California population	Oncorhynchus (=Salmo) mykiss	Fish	Freshwater, Saltwater, Brackish
Steelhead, (Southern California population)	Oncorhynchus (=Salmo) mykiss	Fish	Brackish, Saltwater, Freshwater
Steelhead, (Upper Columbia River population)	Oncorhynchus (=Salmo) mykiss	Fish	Brackish, Saltwater, Freshwater
Steelhead, (Upper Willamette River population)	Oncorhynchus (=Salmo) mykiss	Fish	Brackish, Saltwater, Freshwater
Steelhead, Puget Sound	Oncorhynchus mykiss	Fish	
Stickleback, Unarmored Threespine	Gasterosteus aculeatus williamsoni	Fish	Freshwater
Stilt, Hawaiian (=Ae'o)	Himantopus mexicanus knudseni	Bird	Terrestrial
Stork, Wood	Mycteria americana	Bird	Terrestrial
Sturgeon, Alabama	Scaphirhynchus suttkusi	Fish	Freshwater
Sturgeon, green	Acipenser medirostris	Fish	
Sturgeon, Gulf	Acipenser oxyrinchus desotoi	Fish	Saltwater, Freshwater
Sturgeon, Pallid	Scaphirhynchus albus	Fish	Freshwater
Sturgeon, Shortnose	Acipenser brevirostrum	Fish	Saltwater, Freshwater
Sucker, June	Chasmistes liorus	Fish	Freshwater
Sucker, Lost River	Deltistes luxatus	Fish	Freshwater
Sucker, Modoc	Catostomus microps	Fish	Freshwater
Sucker, Razorback	Xyrauchen texanus	Fish	Freshwater
Sucker, Santa Ana	Catostomus santaanae	Fish	Freshwater
Sucker, Shortnose	Chasmistes brevirostris	Fish	Freshwater
Sucker, Warner	Catostomus warnerensis	Fish	Freshwater
Tern, California Least	Sterna antillarum browni	Bird	Terrestrial
Tern, Interior (population) Least	Sterna antillarum	Bird	Terrestrial
Tern, Roseate	Sterna dougallii dougallii	Bird	Terrestrial
Thrush, Large Kauai	Myadestes myadestinus	Bird	Terrestrial
Thrush, Molokai (Oloma'o)	Myadestes lanaiensis rutha	Bird	Terrestrial
Thrush, Small Kauai (Puaiohi)	Myadestes palmeri	Bird	Terrestrial
Toad, Arroyo Southwestern	Bufo californicus (=microscaphus)	Amphibian	Freshwater, Terrestrial
Toad, Houston	Bufo houstonensis	Amphibian	Terrestrial, Freshwater
Toad, Puerto Rican Crested	Peltophryne lemur	Amphibian	Terrestrial, Freshwater

Amphibian biru rish nepu	Amphibian	Bird	Fish	Reptile
--------------------------	-----------	------	------	---------

Topminnow, Gila (Yaqui)	Poeciliopsis occidentalis	Fish	Freshwater
Tortoise, Desert	Gopherus agassizii	Reptile	Terrestrial
Tortoise, Gopher	Gopherus polyphemus	Reptile	Terrestrial
Towhee, Inyo Brown	Pipilo crissalis eremophilus	Bird	Terrestrial
Trout, Apache	Oncorhynchus apache	Fish	Freshwater
Trout, Bull	Salvelinus confluentus	Fish	Freshwater
Trout, Bull (Columbia River population)	Salvelinus confluentus	Fish	Freshwater
Trout, Bull (Klamath River population)	Salvelinus confluentus	Fish	Freshwater
Trout, Gila	Oncorhynchus gilae	Fish	Freshwater
Trout, Greenback Cutthroat	Oncorhynchus clarki stomias	Fish	Freshwater
Trout, Lahontan Cutthroat	Oncorhynchus clarki henshawi	Fish	Freshwater
Trout, Little Kern Golden	Oncorhynchus aguabonita whitei	Fish	Freshwater
Trout, Paiute Cutthroat	Oncorhynchus clarki seleniris	Fish	Freshwater
Turtle, Alabama Red-bellied	Pseudemys alabamensis	Reptile	Terrestrial, Freshwater
Turtle, Bog (Northern population)	Clemmys muhlenbergii	Reptile	Terrestrial, Freshwater
Turtle, Flattened Musk	Sternotherus depressus	Reptile	Freshwater, Terrestrial
Turtle, Plymouth Red-bellied	Pseudemys rubriventris bangsi	Reptile	Terrestrial, Freshwater
Turtle, Ringed Sawback	Graptemys oculifera	Reptile	Freshwater, Terrestrial
Turtle, Yellow-blotched Map	Graptemys flavimaculata	Reptile	Freshwater, Terrestrial
Vireo, Black-capped	Vireo atricapilla	Bird	Terrestrial
Vireo, Least Bell's	Vireo bellii pusillus	Bird	Terrestrial
Warbler (=Wood), Golden-cheeked	Dendroica chrysoparia	Bird	Terrestrial
Warbler (=Wood), Kirtland's	Dendroica kirtlandii	Bird	Terrestrial
Warbler, Bachman's	Vermivora bachmanii	Bird	Terrestrial
Whipsnake (=Striped Racer), Alameda	Masticophis lateralis euryxanthus	Reptile	Terrestrial
Woodpecker, Ivory-billed	Campephilus principalis	Bird	Terrestrial
Woodpecker, Red-cockaded	Picoides borealis	Bird	Terrestrial
Woundfin	Plagopterus argentissimus	Fish	Freshwater

9/27/2007 9:09:39 AM Ver. 2.10.3

	Bivalve	Crustacea	Gastropod
AL	30	1	10
AR	5	1	1
AZ	0	0	1
CA	0	9	1
CT	1	0	0
FL	7	1	1
GA -	16	0	. 0
HI	0	1	39
IA	2	.0	1
ÍD	0	0	5
IL	7	1	1
IN	10	0	0
KY	22	1	0
LA	3	0	0
MD	1	0	0
MI	2	0	0
MN	2	0	0

9/27/2007 9:23:42 AM Ver. 2.10.3

Page 1 of 8

	Bivalve	Crustacea	Gastropod
MO	5	0	0
MS	8	0	0
NC	8	0	0
NH	1	0	0
NM	0	2	5
NY	1	0	1
OH	6	0	0
OK	2	0 0	0
OR	0	1	0
PA	2	0	0
SC	1	0	0
TN	36	1	1
TX	0	1	1
VA.	21	2	1
$\mathbf{V}\mathbf{T}$	1	0	0
WI	2	0	0
WV	5	0	1

Counties:	366	60	36
States:	27	12	15
Species:	68	21	67

156 species:

Abalone, White	Haliotis sorenseni	Crustacean	Saltwater
Ambersnail, Kanab	Oxyloma haydeni kanabensis	Gastropod	Freshwater, Terrestrial
Amphipod, Illinois Cave	Gammarus acherondytes	Crustacean	Subterraneous, Freshwater
Amphipod, Kauai Cave	Spelaeorchestia koloana	Crustacean	Freshwater, Subterraneous
Amphipod, Noel's	Gammarus desperatus	Crustacean	Freshwater
Amphipod, Peck's Cave	Stygobromus (=Stygonectes) pecki	Crustacean	Subterraneous, Freshwater
Bankclimber, Purple	Elliptoideus sloatianus	Bivalve	Freshwater
Campeloma, Slender	Campeloma decampi	Gastropod	Freshwater
Combshell, Southern (=Penitent mussel)	Epioblasma penita	Bivalve	Freshwater
Combshell, Upland	Epioblasma metastriata	Bivalve	Freshwater
Crayfish, Cave (Cambarus aculabrum)	Cambarus aculabrum	Crustacean	Freshwater
Crayfish, Nashville	Orconectes shoupi	Crustacean	Freshwater
Crayfish, Shasta	Pacifastacus fortis	Crustacean	Freshwater
Elimia, Lacy	Elimia crenatella	Gastropod	Freshwater
Elktoe, Appalachian	Alasmidonta raveneliana	Bivalve	Freshwater
Fairy Shrimp, Conservancy Fairy	Branchinecta conservatio	Crustacean	Vernal pool
Fairy Shrimp, Longhorn	Branchinecta longiantenna	Crustacean	Vernal pool
Fairy Shrimp, Riverside	Streptocephalus woottoni	Crustacean	Vernal pool
Fairy Shrimp, San Diego	Branchinecta sandiegonensis	Crustacean	Vernal pool
Fairy Shrimp, Vernal Pool	Branchinecta lynchi	Crustacean	Vernal pool
Fanshell	Cyprogenia stegaria	Bivalve	Freshwater
Fatmucket, Arkansas	Lampsilis powelli	Bivalve	Freshwater
Isopod, Lee County Cave	Lirceus usdagalun	Crustacean	Freshwater
Isopod, Madison Cave	Antrolana lira	Crustacean	Freshwater
Isopod, Socorro	Thermosphaeroma thermophilus	Crustacean	Freshwater

Kidneyshell, Triangular	Ptychobranchus greenii	Bivalve	Freshwater
Limpet, Banbury Springs	Lanx sp.	Gastropod	Freshwater
Mucket, Orangenacre	Lampsilis perovalis	Bivalve	Freshwater
Mucket, Pink (Pearlymussel)	Lampsilis abrupta	Bivalve	Freshwater
Mussel, Acornshell Southern	Epioblasma othcaloogensis	Bivalve	Freshwater
Mussel, Alabama Moccasinshell	Medionidus acutissimus	Bivalve	Freshwater
Mussel, Black (=Curtus' Mussel) Clubshell	Pleurobema curtum	Bivalve	Freshwater
Mussel, Clubshell	Pleurobema clava	Bivalve	Freshwater
Mussel, Coosa Moccasinshell	Medionidus parvulus	Bivalve	Freshwater
Mussel, Cumberland Combshell	Epioblasma brevidens	Bivalve	Freshwater
Mussel, Cumberland Elktoe	Alasmidonta atropurpurea	Bivalve	Freshwater
Mussel, Cumberland Pigtoe	Pleurobema gibberum	Bivalve	Freshwater
Mussel, Dark Pigtoe	Pleurobema furvum	Bivalve	Freshwater
Mussel, Dwarf Wedge	Alasmidonta heterodon	Bivalve	Freshwater
Mussel, Fine-lined Pocketbook	Lampsilis altilis	Bivalve	Freshwater
Mussel, Fine-rayed Pigtoe	Fusconaia cuneolus	Bivalve	Freshwater
Mussel, Flat Pigtoe (=Marshall's Mussel)	Pleurobema marshalli	Bivalve	Freshwater
Mussel, Gulf Moccasinshell	Medionidus penicillatus	Bivalve	Freshwater
Mussel, Heavy Pigtoe (=Judge Tait's Mussel)	Pleurobema taitianum	Bivalve	Freshwater
Mussel, Heelsplitter Carolina	Lasmigona decorata	Bivalve	Freshwater
Mussel, Heelsplitter Inflated	Potamilus inflatus	Bivalve	Freshwater
Mussel, Ochlockonee Moccasinshell	Medionidus simpsonianus	Bivalve	Freshwater
Mussel, Oval Pigtoe	Pleurobema pyriforme	Bivalve	Freshwater
Mussel, Ovate Clubshell	Pleurobema perovatum	Bivalve	Freshwater
Mussel, Oyster	Epioblasma capsaeformis	Bivalve	Freshwater
Mussel, Ring Pink (=Golf Stick Pearly)	Obovaria retusa	Bivalve	Freshwater
Mussel, Rough Pigtoe	Pleurobema plenum	Bivalve	Freshwater
Mussel, Scaleshell	Leptodea leptodon	Bivalve	Freshwater
Mussel, Shiny Pigtoe	Fusconaia cor	Bivalve	Freshwater
Mussel, Shiny-rayed Pocketbook	Lampsilis subangulata	Bivalve	Freshwater

Museel Courthous Others - II	Diameter and the leave		
Mussel, Southern Clubshell	Pleurobema decisum	Bivalve	Freshwater
Mussel, Southern Pigtoe	Pleurobema georgianum	Bivalve	Freshwater
Mussel, Winged Mapleleaf	Quadrula fragosa	Bivalve	Freshwater
Pearlshell, Louisiana	Margaritifera hembeli	Bivalve	Freshwater
Pearlymussel, Alabama Lamp	Lampsilis virescens	Bivalve	Freshwater
Pearlymussel, Appalachian Monkeyface	Quadrula sparsa	Bivalve	Freshwater
Pearlymussel, Birdwing	Conradilla caelata	Bivalve	Freshwater
Pearlymussel, Cracking	Hemistena lata	Bivalve	Freshwater
Pearlymussel, Cumberland Bean	Villosa trabalis	Bivalve	Freshwater
Pearlymussel, Cumberland Monkeyface	Quadrula intermedia	Bivalve	Freshwater
Pearlymussel, Dromedary	Dromus dromas	Bivalve	Freshwater
Pearlymussel, Fat Pocketbook	Potamilus capax	Bivalve	Freshwater
Pearlymussel, Green-blossom	Epioblasma torulosa gubernaculum	Bivalve	Freshwater
Pearlymussel, Higgins' Eye	Lampsilis higginsii	Bivalve	Freshwater
Pearlymussel, Little-wing	Pegias fabula	Bivalve	Freshwater
Pearlymussel, Orange-footed	Plethobasus cooperianus	Bivalve	Freshwater
Pearlymussel, Pale Lilliput	Toxolasma cylindrellus	Bivalve	Freshwater
Pearlymussel, Purple Cat's Paw	Epioblasma obliquata obliquata	Bivalve	Freshwater
Pearlymussel, Tubercled-blossom	Epioblasma torulosa torulosa	Bivalve	Freshwater
Pearlymussel, Turgid-blossom	Epioblasma turgidula	Bivalve	Freshwater
Pearlymussel, White Cat's Paw	Epioblasma obliquata perobliqua	Bivalve	Freshwater
Pearlymussel, White Wartyback	Plethobasus cicatricosus	Bivalve	Freshwater
Pearlymussel, Yellow-blossom	Epioblasma florentina florentina	Bivalve	Freshwater
Pebblesnail, Flat	Lepyrium showalteri	Gastropod	Freshwater
Purple Bean	Villosa perpurpurea	Bivalve	Freshwater
Rabbitsfoot, Rough	Quadrula cylindrica strigillata	Bivalve	Freshwater
Riffleshell, Northern	Epioblasma torulosa rangiana	Bivalve	Freshwater
Riffleshell, Tan	Epioblasma florentina walkeri (=E. walkeri)	Bivalve	Freshwater
Riversnail, Anthony's	Athearnia anthonyi	Gastropod	Freshwater
Rock-pocketbook, Ouachita (=Wheeler's pm)	Arkansia wheeleri	Bivalve	Freshwater

 \cap

9/27/2007 9:24:28 AM Ver. 2.10.3

Rocksnail, Painted	Leptoxis taeniata	Gastropod	Freshwater
Rocksnail, Plicate	Leptoxis plicata	Gastropod	Freshwater
Rocksnail, Round	Leptoxis ampla	Gastropod	Freshwater
Shagreen, Magazine Mountain	Mesodon magazinensis	Gastropod	Terrestrial
Shrimp, Alabama Cave	Palaemonias alabamae	Crustacean	Freshwater
Shrimp, California Freshwater	Syncaris pacifica	Crustacean	Freshwater
Shrimp, Kentucky Cave	Palaemonias ganteri	Crustacean	Freshwater
Shrimp, Squirrel Chimney Cave	Palaemonetes cummingi	Crustacean	Freshwater, Subterraneous
Slabshell, Chipola	Elliptio chipolaensis	Bivalve	Freshwater
Snail, Armored	Pyrgulopsis (=Marstonia) pachyta	Gastropod	Freshwater
Snail, Bliss Rapids	Taylorconcha serpenticola	Gastropod	Freshwater
Snail, Chittenango Ovate Amber	Succinea chittenangoensis	Gastropod	Terrestrial, Freshwater
Snail, Flat-spired Three-toothed	Triodopsis platysayoides	Gastropod	Terrestrial
Snail, Iowa Pleistocene	Discus macclintocki	Gastropod	Terrestrial
Snail, Lioplax Cylindrical	Lioplax cyclostomaformis	Gastropod	Freshwater
Snail, Morro Shoulderband	Helminthoglypta walkeriana	Gastropod	Terrestrial
Snail, Newcomb's	Erinna newcombi	Gastropod	Freshwater
Snail, O'ahu Tree (Achatinella abbreviata)	Achatinella abbreviata	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella apexfulva)	Achatinella apexfulva	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella bellula)	Achatinella bellula	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella buddii)	Achatinella buddii	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella bulimoides)	Achatinella bulimoides	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella byronii)	Achatinella byronii	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella caesia)	Achatinella caesia	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella casta)	Achatinella casta	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella cestus)	Achatinella cestus	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella concavospira)	Achatinella concavospira	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella curta)	Achatinella curta	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella decipiens)	Achatinella decipiens	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella decora)	Achatinella decora	Gastropod	Terrestrial

Snail, O'ahu Tree (Achatinella dimorpha)	Achatinella dimorpha	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella elegans)	Achatinella elegans	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella fulgens)	Achatinella fulgens	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella fuscobasis)	Achatinella fuscobasis	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella juddii)	Achatinella juddii	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella juncea)	Achatinella juncea	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella lehuiensis)	Achatinella lehuiensis	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella leucorraphe)	Achatinella leucorraphe	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella lila)	Achatinella lila	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella livida)	Achatinella livida	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella Iorata)	Achatinella lorata	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella mustelina)	Achatinella mustelina	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella papyracea)	Achatinella papyracea	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella phaeozona)	Achatinella phaeozona	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella pulcherrima)	Achatinella pulcherrima	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella pupukanioe)	Achatinella pupukanioe	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella rosea)	Achatinella rosea	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella sowerbyana)	Achatinella sowerbyana	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella spaldingi)	Achatinella spaldingi	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella stewartii)	Achatinella stewartii	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella swiftii)	Achatinella swiftii	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella taeniolata)	Achatinella taeniolata	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella thaanumi)	Achatinella thaanumi	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella turgida)	Achatinella turgida	Gastropod	Terrestrial
Snail, O'ahu Tree (Achatinella valida)	Achatinella valida	Gastropod	Terrestrial
Snail, Pecos Assiminea	Assiminea pecos	Gastropod	Freshwater
Snail, Snake River Physa	Physa natricina	Gastropod	Terrestrial
Snail, Stock Island Tree	Orthalicus reses (not incl. nesodryas)	Gastropod	Terrestrial
Snail, Tulotoma	Tulotoma magnifica	Gastropod	Terrestrial
Snail, Utah Valvata	Valvata utahensis	Gastropod	Terrestrial

Shail, Virginia Fringed Mountain	Polygyriscus virginianus	Gastropod	Terrestri
Spinymussel, James River	Pleurobema collina	Bivalve	Freshwa
Spinymussel, Tar River	Elliptio steinstansana	Bivalve	Freshwa
Springsnail, Alamosa	Tryonia alamosae	Gastropod	Freshwa
Springsnail, Idaho	Fontelicella idahoensis	Gastropod	Freshwa
Springsnail, Koster's	Juturnia kosteri	Gastropod	Terrestri
Springsnail, Roswell	Pyrgulopsis roswellensis	Gastropod	Freshwa
Springsnail, Socorro	Pyrgulopsis neomexicana	Gastropod	Freshwa
Stirrupshell	Quadrula stapes	Bivalve	Freshwa
Tadpole Shrimp, Vernal Pool	Lepidurus packardi	Crustacean	Vernal p
Threeridge, Fat (Mussel)	Amblema neislerii	Bivalve	Freshwa

	Mammal	Marine
AK	0	1
AL	4	0
AR [2	0
AZ	9	0
CA	20	2
CO	2	0
CT	1	0
DE	1	0
FL	13	1
GA	3	1
HI	1	1
IA	1	0
ID	4	0
IL.	2	0
IN	2	0
KS	2	0
KY	3	0

9/27/2007 8:47:17 AM Ver. 2.10.3

	Mammal	Marine
LA	1	1
MA	1	Ô
MD	2	ő
ME	1	0
MI	3	ő
MN	2	Ö
MO	2	Õ
MS	2	0
MT	3	0
NC	4	1
NE	1	0
NH	1	0
NJ	1	0
NM	. 5	0
NY	1	0
OH	2	0
OK	3	0
OR	1	0
PA.	2	0
PR	0	1
RI	1	0
SC	1	3
SD TN	1	0
TN	3	0
TX	5	0
UT	2	0
VA	5	0
VT	1	0
WA	4	0
WI	2	0

9/27/2007 8:47:19 AM Ver. 2.10.3

	Mammal	Marine
WV	4	0
WY	1	0
	Mammal	Marine

 Counties:
 1073
 103

 States:
 47
 9

 Species:
 60
 7

		•	
68	cn	ACTAC+	
vo	317	ecies:	

oo species.			
Bat, Gray	Myotis grisescens	Mammal	Subterraneous, Terrestrial
Bat, Hawaiian Hoary	Lasiurus cinereus semotus	Mammal	Terrestrial, Subterraneous
Bat, Indiana	Myotis sodalis	Mammal	Subterraneous, Terrestrial
Bat, Lesser (=Sanborn's) Long-nosed	Leptonycteris curasoae yerbabuenae	Mammal	Subterraneous, Terrestrial
Bat, Mexican Long-nosed	Leptonycteris nivalis	Mammal	Subterraneous, Terrestrial
Bat, Ozark Big-eared	Corynorhinus (=Plecotus) townsendii ingens	Mammal	Terrestrial, Subterraneous
Bat, Virginia Big-eared	Corynorhinus (=Plecotus) townsendii virginianus	Mammal	Terrestrial, Subterraneous
Bear, Grizzly	Ursus arctos horribilis	Mammal	Terrestrial
Bear, Louisiana Black	Ursus americanus luteolus	Mammai	Terrestrial
Caribou, Woodland	Rangifer taranduş caribou	Mammai	Terrestrial
Deer, Columbian White-tailed	Odocoileus virginianus leucurus	Mammal	Terrestrial
Deer, Key	Odocoileus virginianus clavium	Mammal	Terrestrial
Ferret, Black-footed	Mustela nigripes	Mammal	Terrestrial
Fox, San Joaquin Kit	Vulpes macrotis mutica	Mammal	Terrestrial
Fox, San Miguel Island	Urocyon littoralis littoralis	Mammal	Terrestrial
Fox, Santa Catalina Island	Urocyon littoralis catalinae	Mammal	Terrestrial
Fox, Santa Cruz Island	Urocyon littoralis santacruzae	Mammal	Terrestrial
Fox, Santa Rosa Island	Urocyon littoralis santarosae	Mammal	Terrestrial
Jaguar ·	Panthera onca	Mammai	Terrestrial
Jaguarundi, Gulf Coast	Herpailurus (=Felis) yagouaroundi cacomitli	Mammal	Terrestrial
Jaguarundi, Sinaloan	Herpailurus (=Felis) yagouaroundi tolteca	Mammal	Terrestrial
Kangaroo Rat, Fresno	Dipodomys nitratoides exilis	Mammal	Terrestrial
Kangaroo Rat, Giant	Dipodomys ingens	Mammal	Terrestrial
Kangaroo Rat, Morro Bay	Dipodomys heermanni morroensis	Mammal .	Terrestrial
Kangaroo Rat, San Bernardino Merriam's	Dipodomys merriami parvus	Mammal	Terrestrial

Mammal Marine

Kangaroo Rat, Stephens'	Dipodomys stephensi (incl. D. cascus)	Mammal	Terrestrial
Kangaroo Rat, Tipton	Dipodomys nitratoides nitratoides	Mammal	Terrestrial
Lynx, Canada	Lynx canadensis	Mammal	Terrestrial
Manatee, West Indian	Trichechus manatus	Marine mml	Saltwater
Mountain Beaver, Point Arena	Aplodontia rufa nigra	Mammai	Freshwater, Terrestrial
Mouse, Alabama Beach	Peromyscus polionotus ammobates	Mammal	Terrestrial, Coastal (neritic)
Mouse, Anastasia Island Beach	Peromyscus polionotus phasma	Mammal	Terrestrial, Coastal (neritic)
Mouse, Choctawhatchee Beach	Peromyscus polionotus allophrys	Mamma	Coastal (neritic), Terrestrial
Mouse, Key Largo Cotton	Peromyscus gossypinus allapaticola	Mammal	Terrestrial
Mouse, Pacific Pocket	Perognathus longimembris pacificus	Mammal	Terrestrial
Mouse, Perdido Key Beach	Peromyscus polionotus trissyllepsis	Mammal	Coastal (neritic)
Mouse, Preble's Meadow Jumping	Zapus hudsonius preblei	Mammal	Terrestrial
Mouse, Salt Marsh Harvest	Reithrodontomys raviventris	Mammal	Terrestrial
Mouse, Southeastern Beach	Peromyscus polionotus niveiventris	Mammal	Coastal (neritic), Terrestrial
Ocelot	Leopardus (=Felis) pardalis	Mammal	Terrestrial
Otter, Northern Sea	Enhydra lutris kenyoni	Marine mml	Saltwater
Otter, Southern Sea	Enhydra lutris nereis	Marine mml	Saltwater
Panther, Florida	Puma (=Felis) concolor coryi	Mammal	Terrestrial
Prairie Dog, Utah	Cynomys parvidens	Mammal	Terrestrial, Subterraneous
Pronghorn, Sonoran	Antilocapra americana sonoriensis	Mammal	Terrestrial
Rabbit, Lower Keys Marsh	Sylvilagus palustris hefneri	Mammal	Terrestrial
Rabbit, Pygmy	Brachylagus idahoensis	Mammal	Terrestrial
Rabbit, Riparian Brush	Sylvilagus bachmani riparius	Mammal	Terrestrial
Rice Rat (=Silver Rice Rat)	Oryzomys palustris natator	Mammal	Terrestrial
Seal, Guadalupe Fur	Arctocephalus townsendi	Marine mml	Coastal (neritic), Saltwater
Seal, Hawaiian Monk	Monachus schauinslandi	Marine mml	Coastal (neritic), Saltwater
Sheep, Peninsular Bighorn	Ovis canadensis	Mammal	Terrestrial
Sheep, Sierra Nevada Bighorn	Ovis canadensis californiana	Mammal	Terrestrial
Shrew, Buena Vista Lake Ornate	Sorex ornatus relictus	Mammal	Terrestrial
Squirrel, Carolina Northern Flying	Glaucomys sabrinus coloratus	Mammal	Terrestrial

Mammal Marine

Squirrei, Delmarva Peninsula Fox	Sciurus niger cinereus	iviammai	Terrestrial
Squirrel, Mount Graham Red	Tamiasciurus hudsonicus grahamensis	Mammal	Terrestrial
Squirrel, Northern Idaho Ground	Spermophilus brunneus brunneus	Mammal.	Terrestrial
Squirrel, Virginia Northern Flying	Glaucomys sabrinus fuscus	Mammal	Terrestrial
Vole, Amargosa	Microtus californicus scirpensis	Mammal	Terrestrial
Vole, Florida Salt Marsh	Microtus pennsylvanicus dukecampbelli	Mammal	Terrestrial, Brackish
Vole, Hualapai Mexican	Microtus mexicanus hualpaiensis	Mammal	Terrestrial
Whale, Finback	Balaenoptera physalus	Marine mml	Saltwater
Whale, Humpback	Megaptera novaeangliae	Marine mml	Saltwater
Wolf, Gray	Canis lupus	Mammal	Terrestrial
Wolf, Gray	Canis lupus	Mammal	Terrestrial
Woodrat, Key Largo	Neotoma floridana smalli	Mammai	Terrestrial
Woodrat, Riparian	Neotoma fuscipes riparia	Mammal	Terrestrial

	Conf/cycd	Dicot	Ferns	Monocot
ΑK	0	0	1	0
AL	0	10	2	3
AR	0	3	0	0
AZ	. 0	15	0	2
CA	2	159	0	17
CO	0	8	0	1
CT	0	1	0	· 1
DE	0	0	0	2
FL	1	47	0	2
GA	1	9	2	5
HI	0	233	12	22
ΙA	0	3	1	2
ID	0	3	0	0
${ m IL}$	0	7	0	2
IN	0	4	. 0	0
KS	0	1	0	1
KY	0	9	0	0

9/27/2007 9:44:35 AM Ver. 2.10.3

	Conf/cycd	Dicot	Ferns	Monocot
LA	0	.2	1	0
MA	0	1	0	2
MD	0	4	0	2
ME	0	1	0	2
ΜI	. 0	4	1	3
MN	0	2	0	2
MO	0	6	0	1
MS	0	2	1	0
MT	0	2	0	0
NC	. 0	21	0	5
NE	0	0	0	1
NH	0	1	0	1
NJ	0	2	0	3
NM	0	13	0	0
NV	0	8	0	0
NY	0	4	1	1
OH	0	4	0	2
OK	0	0	0	2
OR	0	11	0	2
PA	0	0	0	2
PR	0	35	8	5
RI	0	1	0.	1
SC	0	12	1	6
SD	0	0	0	1
TN	. 0	15	1	1
TX	0	25	0	2
UT	0	13	0	1
VA	0	12	0	4
VT	0	1	0	1
W _. A	0	7	0	0

9/27/2007 9:44:39 AM Ver. 2.10.3

			*							
WI	0	4	0	2						
WV	0	4 4	0	1						
VV V	. 0	4	U	1						
(Conf/cycd	Dicot	Ferns	Monocot						
Counties	: 6	685	40	362						
States:	3	43	12	38						
Species:	3	613	25	67					•	
70	8 specie:	*				,				
		talum (ncn)		Abutilon e	eremitopetalum		Dicot	Terrestrial		
Abutilon	sandwicer	nse (ncn)		Abutilon s	sandwicense		Dicot	Terrestrial		
Achyran	thes mutic	a (ncn)		Achyranti	thes mutica		Dicot	Terrestrial		
Achyran	thes splen	dens var. ro	tundata (ncn) Achyranti	thes splendens v	ar. rotundata	Dicot	Terrestrial		
Adobe S	Sunburst, S	an Joaquin	•	Pseudob	ahia peirsonii		Dicot	Terrestrial		
A'e (Zar	nthoxylum o	lipetalum va	ar. tomentosu	m) Zanthoxy	ylum dipetalum v	ar. tomentosum	Dicot	Terrestrial		
A'e (Zar	nthoxylum h	nawaiiense)		Zanthoxy	ylum hawaiiense		Dicot	Terrestrial		
'Aiea (N	othocestru	m brevifloru	ım)	Nothoces	strum breviflorun	n	Dicot	Terrestrial		•
'Aiea (N	lothocestru	m peltatum))	Nothoces	strum peltatum	*	Dicot	Terrestrial		
'Akoko ((Chamaesy	ce celastroi	ides var. kaeı	nana)			Chama	aesyce celastroides var. kaenai	na Dicot	Terrestrial
'Akoko ((Chamaesy	ce deppear	na)	Chamaes	syce deppeana		Dicot	Terrestrial		
'Akoko ((Chamaesy	ce herbstii)		Chamaes	syce herbstii		Dicot	Terrestrial		
'Akoko ((Chamaesy	ce kuwalea	na)	Chamaes	syce kuwaleana	-	Dicot	Terrestrial		
'Akoko ((Chamaesy	ce rockii)		Chamaes	syce rockii		Dicot	Terrestrial		
'Akoko	(Chamaesy	ce skottsbe	ergii var. skott	sbe <i>Chamaes</i>	syce skottsbergi	i var. kalaeloana	Dicot	Terrestrial		
'Akoko	(Euphorbia	haeleelean	a)	Euphorbi	ia haeleeleana		Dicot	Terrestrial		
Alani (M	felicope ad	scendens)		Melicope	e adscendens		Dicot	Terrestrial		
Alani (M	1elicope ba	lloui)		Melicope	∍ balloui		Dicot	Terrestrial		
Alani (N	1elicope ha	upuensis)		Melicope	e haupuensis		Dicot	Terrestrial		
Alani (N	/lelicope kn	udsenii)		Melicope	e knudsenii		Dicot	Terrestrial		
Alani (N	Nelicope lyc	lgatei)		Melicope	e lydgatei		Dicot	Terrestrial		
Alani (N	/lelicope mu	ucronulata)		Melicope	e mucronulata		Dicot	Terrestrial		
Alani (N	/lelicope mu	unroi)		Melicope	ə munroi		Dicot	Terrestrial		
Alani (N	felicope ov	alis)		Melicope	e ovalis		Dicot	Terrestrial		

Conf/cycd Dicot

Ferns Monocot

Coni/cvco Dicot Ferns Wonoci	Conf/cvcd	Dicot	Ferns	Monoco
------------------------------	-----------	-------	-------	--------

Alani (Melicope pallida)	Melicope pallida	Dicot	Terrestrial
Alani (Melicope quadrangularis)	Melicope quadrangularis	Dicot	Terrestrial
Alani (Melicope reflexa)	Melicope reflexa	Dicot	Terrestrial
Alani (Melicope saint-johnii)	Melicope saint-johnii	Dicot	Terrestrial
Alani (Melicope zahlbruckneri)	Melicope zahlbruckneri	Dicot	Terrestrial
Allocarya, Calistoga	Plagiobothrys strictus	Dicot	Vernal pool
Alopecurus, Sonoma	Alopecurus aequalis var. sonomensis	Monocot	Terrestrial
Alsinidendron obovatum (ncn)	Alsinidendron obovatum	Dicot	Terrestrial
Alsinidendron trinerve (ncn)	Alsinidendron trinerve	Dicot	Terrestrial
Alsinidendron viscosum (ncn)	Alsinidendron viscosum	Dicot	Terrestrial
Amaranth, Seabeach	Amaranthus pumilus	Dicot	Coastal (neritic)
Amaranthus brownii (ncn)	Amaranthus brownii	Dicot	Terrestrial
Ambrosia, San Diego	Ambroșia pumila	Dicot	Terrestrial
Ambrosia, South Texas	Ambrosia cheiranthifolia	Dicot	Terrestrial
Amole, Cammatta Canyon	Chlorogalum purpureum var. reductum	Monocot	Terrestrial
Amole, Purple	Chlorogalum purpureum var. purpureum	Monocot	Terrestrial
Amphianthus, Little	Amphianthus pusillus	Dicot	Freshwater
'Anaunau (Lepidium arbuscula)	Lepidium arbuscula	Dicot	Terrestrial
'Anunu (Sicyos alba)	Sicyos alba	Dicot	Terrestrial
Aristida chaseae (ncn)	Aristida chaseae	Monocot	Terrestrial
Arrowhead, Bunched	Sagittaria fasciculata	Monocot	Freshwater
Asplenium fragile var. insulare (ncn)	Asplenium fragile var. insulare	Ferns	Terrestrial
Aster, Decurrent False	Boltonia decurrens	Dicot	Terrestrial, Freshwater
Aster, Florida Golden	Chrysopsis floridana	Dicot	Terrestrial
Auerodendron pauciflorum (ncn)	Auerodendron pauciflorum	Dicot	Terrestrial
Aupaka (Isodendrion hosakae)	Isodendrion hosakae	Dicot	Terrestrial
Aupaka (Isodendrion laurifolium)	Isodendrion laurifolium	Dicot	Terrestrial
Aupaka (Isodendrion longifolium)	Isodendrion longifolium	Dicot	Terrestrial
Avens, Spreading	Geum radiatum	Dicot	Terrestrial
'Awikiwiki (Canavalia molokaiensis)	Canavalia molokaiensis	Dicot	Terrestrial

'Awiwi (Centaurium sebaeoides)	Centaurium sebaeoides	Dicot	Terrestrial
'Awiwi (Hedyotis cookiana)	Hedyotis cookiana	Dicot	Terrestrial
Ayenia, Texas	Ayenia limitaris	Dicot	Terrestrial
Baccharis, Encinitas	Baccharis vanessae	Dicot	Terrestrial
Barbara Buttons, Mohr's	Marshallia mohrii	Dicot	Terrestrial
Barberry, Island	Berberis pinnata ssp. insularis	Dicot	Terrestrial
Barberry, Nevin's	Berberis nevinii	Dicot	Terrestrial
Bariaco	Trichilia triacantha	Dicot	Terrestrial
Beaked-rush, Knieskern's	Rhynchospora knieskernii	Monocot	Terrestrial
Beardtongue, Penland	Penstemon penlandii	Dicot	Terrestrial
Beargrass, Britton's	Nolina brittoniana	Monocot	Terrestrial
Bear-poppy, Dwarf	Arctomecon humilis	Dicot	Terrestrial
Bedstraw, El Dorado	Galium californicum ssp. sierrae	Dicot	Terrestrial
Bedstraw, Island	Galium buxifolium	Dicot	Terrestrial
Bellflower, Brooksville	Campanula robinsiae	Dicot	Terrestrial
Birch, Virginia Round-leaf	Betula uber	Dicot	Floodplain
Bird's-beak, Palmate-bracted	Cordylanthus palmatus	Dicot	Terrestrial
Bird's-beak, Pennell's	Cordylanthus tenuis ssp. capillaris	Dicot	Terrestrial
Bird's-beak, salt marsh	Cordylanthus maritimus ssp. maritimus	Dicot	Saltwater
Bird's-beak, Soft	Cordylanthus mollis ssp. mollis	Dicot	Brackish, Saltwater
Birds-in-a-nest, White	Macbridea alba	Dicot	Terrestrial
Bittercress, Small-anthered	Cardamine micranthera	Dicot	Terrestrial
Bladderpod, Lyrate	Lesquerella lyrata	Dicot	Terrestrial
Bladderpod, Missouri	Lesquerella filiformis	Dicot	Terrestrial
Bladderpod, San Bernardino Mountains	Lesquerella kingii ssp. bernardina	Dicot	Terrestrial
Bladderpod, Spring Creek	Lesquerella perforata	Dicot	Floodplain
Bladderpod, White	Lesquerella pallida	Dicot	Terrestrial
Bladderpod, Zapata	Lesquerella thamnophila	Dicot	Terrestrial
Blazing Star, Ash Meadows	Mentzelia leucophylla	Dicot	Terrestrial
Blazing Star, Heller's	Liatris helleri	Dicot	Terrestrial

Blazing Star, Scrub	Liatris ohlingerae	Dicot	Terrestrial
Bluecurls, Hidden Lake	Trichostema austromontanum ssp. compactum	Dicot	Terrestrial
Bluegrass, Hawaiian	Poa sandvicensis	Monocot	Terrestrial
Bluegrass, Mann's (Poa mannii)	Poa mannii	Monocot	Terrestrial
Bluegrass, Napa	Poa napensis	Monocot	Terrestrial, Freshwater
Bluegrass, San Bernardino	Poa atropurpurea	Monocot	Terrestrial
Blue-star, Kearney's	Amsonia kearneyana	Dicot	Terrestrial
Bluet, Roan Mountain	Hedyotis purpurea var. montana	Dicot	Terrestrial
Bonamia menziesii (ncn)	Bonamia menziesii	Dicot	Terrestrial
Bonamia, Florida	Bonamia grandiflora	Dicot	Terrestrial
Boxwood, Vahl's	Buxus vahili	Dicot	Terrestrial
Brodiaea, Chinese Camp	Brodiaea pallida	Monocot	Terrestrial
Brodiaea, Thread-leaved	Brodiaea filifolia	Monocot	Terrestrial
Broom, San Clemente Island	Lotus dendroideus ssp. traskiae	Dicot	Terrestrial
Buckwheat, Cushenbury	Eriogonum ovalifolium var. vineum	Dicot	Terrestrial
Buckwheat, Ione (incl. Irish Hill)	Eriogonum apricum (incl. var. prostratum)	Dicot	Terrestrial
Buckwheat, Scrub	Eriogonum longifolium var. gnaphalifolium	Dicot	Terrestrial
Buckwheat, Southern Mountain Wild	Erlogonum kennedyi var. austromontanum	Dicot	Terrestrial
Buckwheat, Steamboat	Eriogonum ovalifolium var. williamsiae	Dicot	Terrestrial
Bulrush, Northeastern (=Barbed Bristle)	Scirpus ancistrochaetus	Monocot	Terrestrial, Freshwater
Bush-mallow, San Clemente Island	Malacothamnus clementinus	Dicot	Terrestrial
Bush-mallow, Santa Cruz Island	Malacothamnus fasciculatus var. nesioticus	Dicot	Terrestrial
Buttercup, Autumn	Ranunculus aestivalis (=acriformis)	Dicot	Terrestrial
Butterfly Plant, Colorado	Gaura neomexicana var. coloradensis	Dicot	Terrestrial
Butterweed, Layne's	Senecio layneae	Dicot	Terrestrial
Butterwort, Godfrey's	Pinguicula ionantha	Dicot	Terrestrial, Freshwater
Button-celery, San Diego	Eryngium aristulatum var. parishii	Dicot	Terrestrial
Cactus, Arizona Hedgehog	Echinocereus triglochidiatus var. arizonicus	Dicot	Terrestrial
Cactus, Bakersfield	Opuntia treleasei	Dicot	Terrestrial
Cactus, Black Lace	Echinocereus reichenbachii var. albertii	Dicot	Terrestrial

Conf/cycd Dicot Ferns Monocot

Cactus, Brady Pincushion	Pediocactus bradyi	Dicot	Terrestrial
Cactus, Bunched Cory	Coryphantha ramillosa	Dicot	Terrestrial
Cactus, Chisos Mountain Hedgehog	Echinocereus chisoensis var. chisoensis	Dicot	Terrestrial
Cactus, Cochise Pincushion	Coryphantha robbinsorum	Dicot	Terrestrial
Cactus, Key Tree	Pilosocereus robinii	Dicot	Terrestrial
Cactus, Knowlton	Pediocactus knowltonii	Dicot	Terrestrial
Cactus, Kuenzler Hedgehog	Echinocereus fendleri var. kuenzleri	Dicot	Terrestrial
Cactus, Lee Pincushion	Coryphantha sneedii var. leei	Dicot	Terrestrial
Cactus, Lloyd's Mariposa	Echinomastus mariposensis	Dicot	Terrestrial
Cactus, Mesa Verde	Sclerocactus mesae-verdae	Dicot	Terrestrial
Cactus, Nellie Cory	Coryphantha minima	Dicot	Terrestrial
Cactus, Nichol's Turk's Head	Echinocactus horizonthalonius var. nicholii	Dicot	Terrestrial
Cactus, Pima Pineapple	Coryphantha scheeri var. robustispina	Dicot	Terrestrial
Cactus, Siler Pincushion	Pediocactus (=Echinocactus,=Utahia) sileri	Dicot	Terrestrial
Cactus, Sneed Pincushion	Coryphantha sneedii var. sneedii	Dicot	Terrestrial
Cactus, Star	Astrophytum asterias	Dicot	Terrestrial
Cactus, Tobusch Fishhook	Ancistrocactus tobuschii	Dicot	Terrestrial
Cactus, Uinta Basin Hookless	Sclerocactus glaucus	Dicot	Terrestrial
Calyptranthes Thomasiana (ncn)	Calyptranthes thomasiana	Dicot	Terrestrial
Campion, Fringed	Silene polypetala	Dicot	Terrestrial
Capa Rosa	Callicarpa ampla	Dicot	Terrestrial
Catchfly, Spalding's	Silene spaldingii	Dicot	Terrestrial
Catesbaea Melanocarpa (ncn)	Catesbaea melanocarpa	Dicot	Terrestrial
Cat's-eye, Terlingua Creek	Cryptantha crassipes	Dicot	Terrestrial
Ceanothus, Coyote	Ceanothus ferrisae	Dicot	Terrestrial
Ceanothus, Pine Hill	Ceanothus roderickii	Dicot	Terrestrial
Ceanothus, Vail Lake	Ceanothus ophiochilus	Dicot	Terrestrial
Centaury, Spring-loving	Centaurium namophilum	Dicot	Terrestrial
Chaffseed, American	Schwalbea americana	Dicot	Terrestrial
Chamaecrista glandulosa (ncn)	Chamaecrista glandulosa var. mirabilis	Dicot	Terrestrial

Chamaesyce Halemanui (ncn)	Chamaesyce halemanui	Dicot	Terrestrial
Checker-mallow, Keck's	Sidalcea keckii	Dicot	Terrestrial
Checker-mallow, Kenwood Marsh	Sidalcea oregana ssp. valida	Dicot	Terrestrial
Checker-mailow, Nelson's	Sidalcea nelsoniana	Dicot	Terrestrial
Checker-mallow, Pedate	Sidalcea pedata -	Dicot	Terrestrial
Checker-mallow, Wenatchee Mountains	Sidalcea oregana var. calva	Dicot	Terrestrial
Chumbo, Higo	Harrisia portoricensis	Dicot	Terrestrial
Chupacallos	Pleodendron macranthum	Dicot	Terrestrial
Clarkia, Pismo	Clarkia speciosa ssp. immaculata	Dicot	Terrestrial
Clarkia, Presidio	Clarkia franciscana	Dicot	Terrestrial
Clarkia, Springville	Clarkia springvillensis	Dicot	Terrestrial
Clarkia, Vine Hill	Clarkia imbricata	Dicot	Terrestrial
Cliffrose, Arizona	Purshia (=cowania) subintegra	Dicot	Terrestrial
Clover, Fleshy Owl's	Castilleja campestris ssp. succulenta	Dicot	Vernal pool
Clover, Leafy Prairie	Dalea foliosa	Dicot	Terrestrial
Clover, Monterey	Trifolium trichocalyx	Dicot	Terrestrial
Clover, Prairie Bush	Lespedeza leptostachya	Dicot	Terrestrial
Clover, Running Buffalo	Trifolium stoloniferum	Dicot	Terrestrial
Clover, Showy Indian	Trifolium amoenum	Dicot	Terrestrial
Cobana Negra	Stahlia monosperma	Dicot	Terrestrial
Coneflower, Smooth	Echinacea laevigata	Dicot	Terrestrial
Coneflower, Tennessee Purple	Echinacea tennesseensis	Dicot	Terrestrial
Cordia bellonis (ncn)	Cordia bellonis	Dicot	Terrestrial
Coyote-thistle, Loch Lomond	Eryngium constancei	Dicot	Terrestrial
Cranichis Ricartii	Cranichis ricartii	Monocot	Terrestrial
Crownbeard, Big-leaved	Verbesina dissita	Dicot	Terrestrial
Crownscale, San Jacinto Valley	Atriplex coronata var. notatior	Dicot	Terrestrial
Cyanea undulata (ncn)	Cyanea undulata	Dicot	Terrestrial
Cycladenia, Jones	Cycladenia jonesil (=humilis)	Dicot	Terrestrial
Cypress, Gowen	Cupressus goveniana ssp. goveniana	Conf/cycds	Terrestrial

Cypress, Santa Cruz	Cupressus abramsiana	Conf/cycds	Terrestrial
Daisy, Lakeside	Hymenoxys herbacea	Dicot	Freshwater
Daisy, Parish's	Erigeron parishii	Dicot	Freshwater
Daisy, Willamette	Erigeron decumbens var. decumbens	Dicot	Terrestrial
Daphnopsis hellerana (ncn)	Daphnopsis hellerana	Dicot	Terrestrial
Dawn-flower, Texas Prairie (=Texas Bitterweed)	Hymenoxys texana	Dicot	Terrestrial
Delissea rhytodisperma (ncn)	Delissea rhytidosperma	Dicot	Terrestrial
Diellia erecta (ncn)	Diellia erecta	Ferns	Terrestrial
Diellia falcata (ncn)	Diellia falcata	Ferns	Terrestrial
Diellia pallida (ncn)	Diellia pallida	Ferns	Terrestrial
Diellia unisora (ncn)	Diellia unisora	Ferns	Terrestrial
Diplazium molokaiense (ncn)	Diplazium molokaiense	Ferns	Terrestrial
Dogweed, Ashy	Thymophylla tephroleuca	Dicot	Terrestrial
Dropwort, Canby's	Oxypolis canbyi	Dicot	Terrestrial, Freshwater
Dubautia latifolia (ncn)	Dubautia latifolia	Dicot	Terrestrial
Dubautia pauciflorula (ncn)	Dubautia pauciflorula	Dicot	Terrestrial
Dudleya, Conejo	Dudleya abramsii ssp. parva	Dicot	Terrestrial
Dudleya, Marcescent	Dudleya cymosa ssp. marcescens	Dicot	Terrestrial
Dudleya, Santa Clara Valley	Dudleya setchellii	Dicot	Terrestrial
Dudleya, Santa Cruz Island	Dudleya nesiotica	Dicot	Terrestrial
Dudleya, Santa Monica Mountains	Dudleya cymosa ssp. ovatifolia	Dicot	Terrestrial
Dudleya, Verity's	Dudleya verityi	Dicot	Terrestrial
Dwarf-flax, Marin	Hesperolinon congestum	Dicot	Terrestrial
Erubia	Solanum drymophilum	Dicot	Terrestrial
Eugenia Woodburyana	Eugenia woodburyana	Dicot	Terrestrial
Evening-primrose, Antioch Dunes	Oenothera deltoides ssp. howellii	Dicot	Terrestrial
Evening-primrose, Eureka Valley	Oenothera avita ssp. eurekensis	Dicot	Terrestrial
Evening-primrose, San Benito	Camissonia benitensis	Dicot	Terrestrial
Fern, Adiantum vivesii	Adiantum vivesii	Ferns	Terrestrial

Fern, Aleutian Shield	Polystichum aleuticum	Ferns	Terrestrial
Fern, American hart's-tongue	Asplenium scolopendrium var. americanum	Ferns .	Terrestrial
Fern, Elaphoglossum serpens	Elaphoglossum serpens	Ferns	Terrestrial
Fern, Pendant Kihi (Adenophorus periens)	Adenophorus periens	Ferns	Terrestrial
Fern, Thelypteris inabonensis	Thelypteris inabonensis	Ferns	Terrestrial
Fern, Thelypteris verecunda	Thelypteris verecunda	Ferns	Terrestrial
Fern, Thelypteris yaucoensis	Thelypteris yaucoensis	Ferns	Terrestrial
Fiddleneck, Large-flowered	Amsinckia grandiflora	Dicot	Terrestrial
Flannelbush, Mexican	Fremontodendron mexicanum	Dicot	Terrestrial
Flannelbush, Pine Hill	Fremontodendron californicum ssp. decumbens	Dicot	Terrestrial
Fleabane, Zuni	Erigeron rhizomatus	Dicot	Terrestrial
Four-o'clock, Macfarlane's	Mirabilis macfarlanei	Dicot	Terrestrial
Frankenia, Johnston's	Frankenia johnstonii	Dicot	Terrestrial
Fringe Tree, Pygmy	Chionanthus pygmaeus	Dicot	Terrestrial
Fringepod, Santa Cruz Island	Thysanocarpus conchuliferus	Dicot	Terrestrial
Fritillary, Gentner's	Fritillaria gentneri	Monocot	Terrestrial
Fruit, Earth (=geocarpon)	Geocarpon minimum	Dicot	Terrestrial
Gahnia Lanaiensis (ncn)	Gahnia lanaiensis	Monocot	Terrestrial
Geranium, Hawaiian Red-flowered	Geranium arboreum	Dicot	Terrestrial
Gerardia, Sandplain	Agalinis acuta	Dicot	Terrestrial
Gesneria pauciflora (ncn)	Gesneria pauciflora	Dicot	Terrestrial
Gilia, Hoffmann's Slender-flowered	Gilia tenuiflora ssp. hoffmannii	Dicot	Terrestrial
Gilia, Monterey	Gilia tenuiflora ssp. arenaria	Dicot	Terrestrial
Goetzea, Beautiful (Matabuey)	Goetzea elegans	Dicot	Terrestrial
Golden Sunburst, Hartweg's	Pseudobahia bahiifolia	Dicot	Terrestrial
Goldenrod, Blue Ridge	Solidago spithamaea	Dicot	Terrestrial
Goldenrod, Houghton's	Solidago houghtonii	Dicot	Terrestrial
Goldenrod, Short's	Solidago shortii	Dicot	Terrestrial
Goldenrod, White-haired	Solidago albopilosa	Dicot	Terrestrial
Goldfields, Burke's	Lasthenia burkei	Dicot	Terrestrial

Conf/cvcd	Dicot	Ferns	Monocot
COMOVC	DIGOL	1 51113	WICHIOCOL

Goldfields, Contra Costa	Lasthenia conjugens	Dicot	Terrestrial
Gooseberry, Miccosukee	Ribes echinellum	Dicot	Terrestrial
Gouania hillebrandii (ncn)	Gouania hillebrandii	Dicot	Terrestrial
Gouania meyenii (ncn)	Gouania meyenii	Dicot	Terrestrial
Gouania vitifolia (ncn)	Gouania vitifolia	Dicot	Terrestrial
Gourd, Okeechobee	Cucurbita okeechobeensis ssp. okeechobeensis	Dicot	Terrestrial
Grass, California Orcutt	Orcuttia californica	Monocot	Vernal pool, Terrestrial
Grass, Colusa	Neostapfia colusana	Monocot	Vernal pool
Grass, Eureka Dune	Swallenia alexandrae	Monocot	Terrestrial
Grass, Fosberg's Love	Eragrostis fosbergii	Monocot	Terrestrial
Grass, Hairy Orcutt	Orcuttia pilosa	Dicot	Vernal pool
Grass, Sacramento Orcutt	Orcuttia viscida	Dicot	Vernal pool
Grass, San Joaquin Valley Orcutt	Orcuttia inaequalis	Monocot	Vernal pool
Grass, Slender Orcutt	Orcuttia tenuis	Dicot	Vernal pool
Grass, Solano	Tuctoria mucronata	Monocot	Vernal pool, Terrestrial
Grass, Tennessee Yellow-eyed	Xyris tennesseensis	Monocot	Terrestrial
Ground-plum, Guthrie's	Astragalus bibullatus	Dicot	Terrestrial
Groundsel, San Francisco Peaks	Senecio franciscanus	Dicot	Terrestrial
Gumplant, Ash Meadows	Grindelia fraxino-pratensis	Dicot	Terrestrial
Haha (Cyanea acuminata)	Cyanea acuminata	Dicot	Terrestrial
Haha (Cyanea asarifolia)	Cyanea asarifolia	Dicot	Terrestrial
Haha (Cyanea copelandii ssp. copelandii)	Cyanea copelandii ssp. copelandii	Dicot	Terrestrial
Haha (Cyanea copelandii ssp. haleakalaensis)	Cyanea copelandii ssp. haleakalaensis	Dicot	Terrestrial
Haha (Cyanea Crispa) (=Rollandia crispa)	Cyanea (=Rollandia) crispa	Dicot	Terrestrial
Haha (Cyanea dunbarii)	Cyanea dunbarii	Dicot	Terrestrial
Haha (Cyanea glabra)	Cyanea glabra	Dicot	Terrestrial
Haha (Cyanea grimesiana ssp. grimesiana)	Cyanea grimesiana ssp. grimesiana	Dicot	Terrestrial
Haha (Cyanea grimesiana ssp. obatae)	Cyanea grimesiana ssp. obatae	Dicot	Terrestrial
Haha (Cyanea hamatiflora ssp. carlsonii)	Cyanea hamatiflora carlsonii	Dicot	Terrestrial
Haha (Cyanea hamatiflora ssp. hamatiflora)	Cyanea hamatiflora ssp. hamatiflora	Dicot	Terrestrial

9/27/2007 9:48:41 AM Ver. 2.10.3

11-1-70			
Haha (Cyanea humboldtiana)	Cyanea humboldtiana	Dicot	Terrestrial
Haha (Cyanea koolauensis)	Cyanea koolauensis	Dicot	Terrestrial
Haha (Cyanea longiflora)	Cyanea longiflora	Dicot	Terrestrial
Haha (Cyanea Macrostegia var. gibsonii)	Cyanea macrostegia ssp. gibsonii	Dicot	Terrestrial
Haha (Cyanea mannii)	Cyanea mannii	Dicot	Terrestrial
Haha (Cyanea mceldowneyi)	Cyanea mceldowneyi	Dicot	Terrestrial
Haḥa (Cyanea pinnatifida)	Cyanea pinnatifida	Dicot	Terrestrial
Haha (Cyanea platyphylla)	Cyanea platyphylla	Dicot	Terrestrial
Haha (Cyanea procera)	Cyanea procera	Dicot	Terrestrial
Haha (Cyanea recta)	Cyanea recta	Dicot	Terrestrial
Haha (Cyanea remyi)	Cyanea remyi	Dicot	Terrestrial
Haha (Cyanea shipmanii)	Cyanea shipmannii	Dicot	Terrestrial
Haha (Cyanea stictophylla)	Cyanea stictophylla	Dicot	Terrestrial
Haha (Cyanea St-Johnii) (=Rollandia St-Johnii)	Cyanea st-johnii	Dicot	Terrestrial
		-	
Haha (Cyanea superba)	Cyanea superba	Dicot	Terrestrial
Ha'lwale (Cyrtandra crenata)	Cyrtandra crenata	Dicot	Terrestrial
Ha'lwale (Cyrtandra dentata)	Cyrtandra dentata	Dicot	Terrestrial
Ha'lwale (Cyrtandra giffardii)	Cyrtandra giffardii	Dicot	Terrestrial
Ha'lwale (Cyrtandra limahuliensis)	Cyrtandra limahuliensis	Dicot	Terrestrial
Ha'lwale (Cyrtandra munroi)	Cyrtandra munroi	Dicot	Terrestrial
Ha'lwale (Cyrtandra polyantha)	Cyrtandra polyantha	Dicot	Terrestrial
Ha'lwale (Cyrtandra subumbellata)	Cyrtandra subumbellata	Dicot	Terrestrial
Ha'lwale (Cyrtandra tintinnabula)	Cyrtandra tintinnabula	Dicot	Terrestrial
Ha'lwale (Cyrtandra viridiflora)	Cyrtandra viridiflora	Dicot	Terrestrial
Hala Pepe (Pleomele hawaiiensis)	Pleomele hawaiiensis	Monocot	Terrestrial
Haplostachys Haplostachya (ncn)	Haplostachys haplostachya	Dicot	Terrestrial
Harebells, Avon Park	Crotalaria avonensis	Dicot	Terrestrial
Harperella	Ptilimnium nodosum	Dicot	Freshwater
Hau Kauhiwi (Hibiscadelphus woodi)	Hibiscadelphus woodil	Dicot	Terrestrial

Hau Kuahiwi (Hibiscadelphus distans)	Hibiscadelphus distans	Dicot	Terrestrial
Heartleaf, Dwarf-flowered	Hexastylis naniflora	Dicot	Terrestrial
Heather, Mountain Golden	Hudsonia montana	Dicot	Terrestrial
Heau (Exocarpos luteolus)	Exocarpos luteolus	Dicot	Terrestrial
Hedyotis degeneri (ncn)	Hedyotis degeneri	Dicot	Terrestrial
Hedyotis parvula (ncn)	Hedyotis parvula	Dicot	Terrestrial
Hedyotis StJohnii (ncn)	Hedyotis stjohnii	Dicot	Terrestrial
Hesperomannia arborescens (ncn)	Hesperomannia arborescens	Dicot	Terrestrial
Hesperomannia arbuscula (ncn)	Hesperomannia arbuscula	Dicot	Terrestrial
Hesperomannia lydgatei (ncn)	Hesperomannia lydgatei	Dicot	Terrestrial
Hibiscus, Clay's	Hibiscus clayi	Dicot	Terrestrial
Higuero De Sierra	Crescentia portoricensis	Dicot	Terrestrial
Hilo Ischaemum (Ischaemum byrone)	Ischaemum byrone	Monocot	Terrestrial
Holei (Ochrosia kilaueaensis)	Ochrosia kilaueaensis	Dicot	Terrestrial
Holly, Cook's	llex cookii	Dicot	Terrestrial
Howellia, Water	Howellia aquatilis	Dicot	Freshwater
Hypericum, Highlands Scrub	Hypericum cumulicola	Dicot	Terrestrial
'Ihi'lhi (Marsilea villosa)	Marsilea villosa	Ferns	Vernal pool, Terrestrial
Ilex sintenisii (ncn)	llex sintenisii	Dicot	Terrestrial
Iliau (Wilkesia hobdyi)	Wilkesia hobdyi	Dicot	Terrestrial
Ipomopsis, Holy Ghost	Ipomopsis sancti-spiritus	Dicot	Terrestrial
Iris, Dwarf Lake	Iris lacustris	Monocot	Terrestrial
Irisette, White	Sisyrinchium dichotomum	Monocot	Terrestrial
Ivesia, Ash Meadows	Ivesia kingli var. eremica	Dicot	Terrestrial
Jacquemontia, Beach	Jacquemontia reclinata	Dicot	Terrestrial, Coastal (neritic)
Jewelflower, California	Caulanthus californicus	Dicot	Terrestrial
Jewelflower, Tiburon	Streptanthus niger	Dicot	Terrestrial
Joint-vetch, Sensitive	Aeschynomene virginica	Dicot	Terrestrial, Brackish
Kamakahala (Labordia cyrtandrae)	Labordia cyrtandrae	Dicot	Terrestrial
Kamakahala (Labordia lydgatei)	Labordia lydgatei	Dicot	Terrestrial

Conf/cvcd	Dicot	Ferns	Monocot
Conicaca	DICOL	rems	IMOHOCO

Kamakahala (Labordia tinifolia var. lanaiensis)	Labordia tinifolia var. lanaiensis	Dicot	Terrestrial
Kamakahala (Labordia tinifolia var. wahiawaen)	Labordia tinifolia var. wahiawaensis	Dicot	Terrestrial
Kamakahala (Labordia triflora)	Labordia triflora	Dicot	Terrestrial
Kamanomano (Cenchrus agrimonioides)	Cenchrus agrimonioides	Monocot	Terrestrial
Kanaloa kahoolawensis (ncn)	Kanaloa kahoolawensis	Dicot	Terrestrial
Kauila (Colubrina oppositifolia)	Colubrina oppositifolia	Dicot	Terrestrial
Kaulu (Pteralyxia kauaiensis)	Pteralyxia kauaiensis	Dicot	Terrestrial
Kio'Ele (Hedyotis coriacea)	Hedyotis coriacea	Dicot	Terrestrial
Kiponapona (Phyllostegia racemosa)	Phyllostegia racemosa	Dicot	Terrestrial
Koki'o (Kokia drynarioides)	Kokia drynarioides	Dicot	Terrestrial
Koki'o (Kokia kauaiensis)	Kokia kauaiensis	Dicot	Terrestrial
Koki'o Ke'oke'o (Hibiscus arnottianus ssp. immaculatus)	Hibiscus arnottianus ssp. immaculatus	Dicot	Terrestrial
Koki'o Ke'oke'o (Hibiscus waimeae ssp. hannerae)	Hibiscus waimeae ssp. hannerae	Dicot	Terrestrial
Kolea (Myrsine juddii)	Myrsine juddii	Dicot	Terrestrial
Kolea (Myrsine linearifolia)	Myrsine linearifolia	Dicot	Terrestrial
Ko'oko'olau (Bidens micrantha ssp. kalealaha)	Bidens micrantha ssp. kalealaha	Dicot	Terrestrial
Ko'oko'olau (Bidens wiebkei)	Bidens wiebkei	Dicot	Terrestrial
Ko'oloa'ula (Abutilon menziesii)	Abutilon menziesii	Dicot	Terrestrial
Kopa (Hedyotis schlechtendahliana var. remyi)	Hedyotis schlechtendahliana var. remyi	Dicot	Terrestrial
Kuawawaenohu (Alsinidendron lychnoides)	Alsinidendron lychnoides	Dicot	Terrestrial
Kulu'l (Nototrichium humile)	Nototrichium humile	Dicot	Terrestrial
Ladies'-tresses, Canelo Hills	Spiranthes delitescens	Monocot	Terrestrial
Ladies'-tresses, Navasota	Spiranthes parksii	Monocot	Terrestrial
Ladies'-tresses, Ute	Spiranthes diluvialis	Monocot	Terrestrial
Larkspur, Baker's	Delphinium bakeri	Dicot	Terrestrial
Larkspur, San Clemente Island	Delphinium variegatum ssp. kinkiense	Dicot	Terrestrial
Larkspur, Yeilow	Delphinium luteum	Dicot	Terrestrial
Lau'ehu (Panicum niihauense)	Panicum niihauense	Monocot	Terrestrial

9/27/2007 9:49:55 AM Ver. 2.10.3

Laukahi Kuahiwi (Plantago hawaiensis)	Plantago hawaiensis	Dicot	Terrestrial
Laukahi Kuahiwi (Plantago princeps)	Plantago princeps	Dicot	Terrestrial
Laulihilihi (Schiedea stellarioides)	Schiedea stellarioides	Dicot	Terrestrial
Layia, Beach	Layia carnosa	Dicot	Terrestrial, Coastal (neritic)
Lead-plant, Crenulate	Amorpha crenulata	Dicot	Terrestrial
Leather-flower, Alabama	Clematis socialis	Dicot	Terrestrial
Leather-flower, Morefield's	Clematis morefieldii	Dicot	Terrestrial
Lepanthes eltorensis (ncn)	Lepanthes eltoroensis	Monocot	Terrestrial
Lessingia, San Francisco	Lessingia germanorum (=L.g. var. germanorum)	Dicot	Terrestrial
Lily, Minnesota Trout	Erythronium propullans	Monocot	Terrestrial
Lily, Pitkin Marsh	Lilium pardalinum ssp. pitkinense	Monocot	Freshwater
Lily, Western	Lilium occidentale	Monocot	Terrestrial
Lipochaeta venosa (ncn)	Lipochaeta venosa	Dicot	Terrestrial ·
Liveforever, Laguna Beach	Dudleya stolonifera	Dicot	Terrestrial
Liveforever, Santa Barbara Island	Dudleya traskiae	Dicot	Terrestrial
Lo`ulu (Pritchardia affinis)	Pritchardia affinis	Monocot	Terrestrial
Lo`ulu (Pritchardia kaalae)	Pritchardia kaalae	Monocot	Terrestrial
Lo`ulu (Pritchardia munroi)	Pritchardia munroi	Monocot	Terrestrial
Lo`ulu (Pritchardia napaliensis)	Pritchardia napaliensis	Monocot	Terrestrial
Lo`ulu (Pritchardia remota)	Pritchardia remota	Monocot	Terrestrial
Lo`ulu (Pritchardia schattaueri)	Pritchardia schattaueri	Monocot	Terrestrial
Lo`ulu (Pritchardia viscosa)	Pritchardia viscosa	Monocot	Terrestrial
Lobelia monostachya (ncn)	Lobelia monostachya	Dicot	Terrestrial
Lobelia niihauensis (ncn)	Lobelia niihauensis	Dicot	Terrestrial
Lobelia oahuensis (ncn)	Lobelia oahuensis	Dicot	Terrestrial
Locoweed, Fassett's	Oxytropis campestris var. chartacea	Dicot	Terrestrial
Lomatium, Bradshaw's	Lomatium bradshawii	Dicot	Terrestrial, Freshwater
Lomatium, Cook's	Lomatium cookii	Dicot	Vernal pool
Loosestrife, Rough-leaved	Lysimachia asperulaefolia	Dicot	Terrestrial
Lousewort, Furbish	Pedicularis furbishiae	Dicot	Terrestrial

Conf/cycd	Dicot	Ferns	Monocot
COHI/CYCA	DICOL	Lellio	IVIOLIUGUI

Lupine, Clover	Lupinus tidestromii	Dicot	Coastal (neritic)
Lupine, Kincaid's	Lupinus sulphureus (=oreganus) ssp. kincaidii (=var. kincaidii)	Dicot	Terrestrial
Lupine, Nipomo Mesa	Lupinus nipomensis	Dicot	Coastal (neritic)
Lupine, Scrub	Lupinus aridorum	Dicot	Terrestrial
Lyonia truncata var. proctorii (ncn)	Lyonia truncata var. proctorii	Dicot	Terrestrial
Lysimachia filifolia (ncn)	Lysimachia filifolia	Dicot	Terrestrial
Lysimachia lydgatei (ncn)	Lysimachia lydgatei	Dicot	Terrestrial
Lysimachia maxima (ncn)	Lysimachia maxima	Dicot	Terrestrial
Mahoe (Alectryon macrococcus)	Alectryon macrococcus	Dicot	Terrestrial
Makou (Peucedanum sandwicense)	Peucedanum sandwicense	Dicot	Terrestrial
Malacothrix, Island	Malacothrix squalida	Dicot	Terrestrial
Malacothrix, Santa Cruz Island	Malacothrix indecora	Dicot	Terrestrial
Mailow, Kern	Eremalche kernensis	Dicot	Terrestrial
Manaca, palma de	Calyptronoma rivalis	Monocot	Terrestrial
Manioc, Walker's	Manihot walkerae	Dicot	Terrestrial
Manzanita, Del Mar	Arctostaphylos glandulosa ssp. crassifolia	Dicot	Terrestrial
Manzanita, Ione	Arctostaphylos myrtifolia	Dicot	Terrestrial
Manzanita, Morro	Arctostaphylos morroensis	Dicot	Terrestrial
Manzanita, Pallid	Arctostaphylos pallida	Dicot	Terrestrial
Manzanita, Santa Rosa Island	Arctostaphylos confertiflora	Dicot	Terrestrial
Ma'o Hau Hele (Hibiscus brackenridgei)	Hibiscus brackenridgei	Dicot	Terrestrial
Ma'oli'oli (Schiedea apokremnos)	Schiedea apokremnos	Dicot	Terrestrial
Ma'oli'oli (Schiedea kealiae)	Schiedea kealiae	Dicot	Terrestrial
Mapele (Cyrtandra cyaneoides)	Cyrtandra cyaneoides	Dicot	Terrestrial
Mariscus fauriei (ncn)	Mariscus fauriei	Monocot	Terrestrial
Mariscus pennatiformis (ncn)	Mariscus pennatiformis	Monocot	Terrestrial
Meadowfoam, Butte County	Limnanthes floccosa ssp. californica	Dicot	Vernal pool
Meadowfoam, Large-flowered Woolly	Limnanthes floccosa ssp. Grandiflora	Dicot	Vernal pool
Meadowfoam, Sebastopol	Limnanthes vinculans	Dicot	Freshwater, Terrestrial

9/27/2007 9:50:44 AM Ver. 2.10.3

Meadowrue, Cooley's	Thalictrum cooleyi	Dicot	Terrestrial
Mehamehame (Flueggea neowawraea)	Flueggea neowawraea	Dicot	Terrestrial
Milkpea, Small's	Galactia smallii	Dicot	Terrestrial
Milk-vetch, Applegate's	Astragalus applegatei	Dicot	Terrestrial
Milk-vetch, Ash Meadows	Astragalus phoenix	Dicot	Terrestrial
Milk-vetch, Braunton's	Astragalus brauntonii	Dicot	Terrestrial
Milk-vetch, Clara Hunt's	Astragalus clarianus	Dicot	Terrestrial
Milk-vetch, Coachella Valley	Astragalus lentiginosus var. coachellae	Dicot	Terrestrial
Milk-vetch, Coastal Dunes	Astragalus tener var. titi	Dicot	Terrestrial
Milk-vetch, Cushenbury	Astragalus albens	Dicot	Terrestrial
Milk-vetch, Deseret	Astragalus desereticus	Dicot	Terrestrial
Milk-vetch, Fish Slough	Astragalus lentiginosus var. piscinensis	Dicot	Terrestrial
Milk-vetch, Holmgren	Astragalus holmgreniorum	Dicot	Terrestrial
Milk-vetch, Jesup's	Astragalus robbinsii var. jesupi	Dicot	Terrestrial
Milk-vetch, Lane Mountain	Astragalus jaegerianus	Dicot	Terrestrial
Milk-vetch, Mancos	Astragalus humillimus	Dicot	Terrestrial
Milk-vetch, Osterhout	Astragalus osterhoutii	Dicot	Terrestrial
Milk-vetch, Pierson's	Astragalus magdalenae var. peirsonii	Dicot	Terrestrial
Milk-vetch, Sentry	Astragalus cremnophylax var. cremnophylax	Dicot	Terrestrial
Milk-vetch, Shivwits	Astragalus ampullarioides	Dicot	Terrestrial
Milk-vetch, Triple-ribbed	Astragalus tricarinatus	Dicot	Terrestrial
Milk-vetch, Ventura Marsh	Astragalus pycnostachyus var. lanosissimus	Dicot	Terrestrial, Freshwater
Milkweed, Mead's	Asclepias meadii	Dicot .	Terrestrial
Milkweed, Welsh's	Asclepias welshii	Dicot	Terrestrial
Mint, Garrett's	Dicerandra christmanii	Dicot	Terrestrial
Mint, Lakela's	Dicerandra immaculata	Dicot	Terrestrial
Mint, Longspurred	Dicerandra cornutissima	Dicot	Terrestrial
Mint, Otay Mesa	Pogogyne nudiuscula	Dicot	Terrestrial
Mint, San Diego Mesa	Pogogyne abramsii	Dicot	Terrestrial
Mint, Scrub	Dicerandra frutescens	Dicot	Terrestrial

Mitracarpus Maxwelliae	Mitracarpus maxwelliae	Dicot	Terrestrial
Mitracarpus Polycladus	Mitracarpus polycladus	Dicot	Terrestrial
Monardella, Willowy	Monardella linoides ssp. viminea	Dicot	Terrestrial
Monkey-flower, Michigan	Mimulus glabratus var. michiganensis	Dicot	Terrestrial, Freshwater
Monkshood, Northern Wild	Aconitum noveboracense	Dicot	Terrestrial
Morning-glory, Stebbins	Calystegia stebbinsii	Dicot	Terrestrial
Mountainbalm, Indian Knob	Eriodictyon altissimum	Dicot	Terrestrial
Mountain-mahogany, Catalina Island	Cercocarpus traskiae	Dicot	Terrestrial
Munroidendron racemosum (ncn)	Munroidendron racemosum	Dicot	Terrestrial
Mustard, Carter's	Warea carteri	Dicot	Terrestrial
Mustard, Slender-petaled	Thelypodium stenopetalum	Dicot	Terrestrial
Myrcia Paganii	Myrcia paganii	Dicot	Terrestrial
Na'ena'e (Dubautia herbstobatae)	Gopherus polyphemus	Dicot	Terrestrial
Na'ena'e (Dubautia plantaginea ssp. humilis)	Dubautia plantaginea ssp. humilis	Dicot	Terrestrial
Nani Wai'ale'ale (Viola kauaensis var. wahiawaensis)	Viola kauaiensis var. wahiawaensis	Dicot	Terrestrial
Nanu (Gardenia mannii)	Gardenia mannii	Dicot	Terrestrial
Na'u (Gardenia brighamii)	Gardenia brighamii	Dicot	Terrestrial
Naupaka, Dwarf (Scaevola coriacea)	Scaevola coriacea	Dicot	Terrestrial
Navarretia, Few-flowered	Navarretia leucocephala ssp. pauciflora (=N. pauciflora)	Dicot	Vernal pool, Terrestrial
Navarretia, Many-flowered	Navarretia leucocephala ssp. plieantha	Dicot	Terrestrial, Vernal pool
Navarretia, Spreading	Navarretia fossalis	Dicot	Vernal pool
Nehe (Lipochaeta fauriei)	Lipochaeta fauriei	Dicot	Terrestrial
Nehe (Lipochaeta kamolensis)	Lipochaeta kamolensis	Dicot	Terrestrial
Nehe (Lipochaeta lobata var. leptophylla)	Lipochaeta lobata var. leptophylla	Dicot	Terrestrial
Nehe (Lipochaeta micrantha)	Lipochaeta micrantha	Dicot	Terrestrial
Nehe (Lipochaeta tenuifolia)	Lipochaeta tenuifolia	Dicot	Terrestrial
Nehe (Lipochaeta waimeaensis)	Lipochaeta waimeaensis	Dicot	Terrestrial
Neraudia angulata (ncn)	Neraudia angulata	Dicot	Terrestrial
Neraudia ovata (ncn)	Neraudia ovata	Dicot	Terrestrial

Conf/cvcd	Dicot	Ferns	Monocot
	Dicci	1 61113	INIOITOCOL

Neraudia sericea (ncn)	Neraudia sericea	Dicot	Terrestrial		
Nioi (Eugenia koolauensis)	Eugenia koolauensis	Dicot	Terrestrial		
Niterwort, Amargosa	Nitrophila mohavensis	Dicot	Terrestrial		
Nohoanu (Geranium multiflorum)	Geranium multiflorum	Dicot	Terrestrial		
Oak, Hinckley	Quercus hinckleyi	Dicot	Terrestrial		
'Oha (Delissea rivularis)	Delissea rivularis	Dicot	Terrestrial		
'Oha (Delissea subcordata)	Delissea subcordata	Dicot	Terrestrial		
'Oha (Delissea undulata)	Delissea undulata	Dicot	Terrestrial		
'Oha (Lobelia gaudichaudii koolauensis)	Lobelia gaudichaudii ssp. koolauensis	Dicot	Terrestrial		
'Oha Wai (Clermontia drepanomorpha)	Clermontia drepanomorpha	Dicot	Terrestrial		
'Oha Wai (Clermontia lindseyana)	Clermontia lindseyana	Dicot	Terrestrial		
'Oha Wai (Clermontia oblongifolia ssp. brevip	oes)Clermontia oblongifolia ssp. brevipes	Dicot	Terrestrial		
'Oha Wai (Clermontia oblongifolia ssp. mauid	ensis)	Clermontia ol	blongifolia ssp. mauiensis	Dicot	Terrestrial
'Oha Wai (Clermontia peleana)	Clermontia peleana	Dicot	Terrestrial		
'Oha Wai (Clermontia pyrularia)	Clermontia pyrularia	Dicot	Terrestrial	•	
'Oha Wai (Clermontia samuelii)	Clermontia samuelii	Dicot	Terrestrial		
'Ohai (Sesbania tomentosa)	Sesbania tomentosa	Dicot	Terrestrial		
'Ohe'ohe (Tetraplasandra gymnocarpa)	Tetraplasandra gymnocarpa	Dicot	Terrestrial		
'Olulu (Brighamia insignis)	Brighamia insignis	Dicot	Terrestrial		
Onion, Munz's	Allium munzii	Monocot	Terrestrial		
Opuhe (Urera kaalae)	Urera kaalae	Dicot	Terrestrial		•
Orchid, Eastern Prairie Fringed	Platanthera leucophaea	Monocot	Terrestrial		
Orchid, Western Prairie Fringed	Platanthera praeclara	Monocot	Terrestrial		
Oxytheca, Cushenbury	Oxytheca parishii var. goodmaniana	Dicot	Terrestrial		
Paintbrush, Ash-grey Indian	Castilleja cinerea	Dicot	Terrestrial		
Paintbrush, Golden	Castilleja levisecta	Dicot	Terrestrial		
Paintbrush, San Clemente Island Indian	Castilleja grisea	Dicot	Terrestrial		
Paintbrush, Soft-leaved	Castilleja mollis	Dicot	Terrestrial		
Paintbrush, Tiburon	Castilleja affinis ssp. neglecta	Dicot	Terrestrial		

9/27/2007 9:52:23 AM Ver. 2.10.3

Palo Colorado (Ternstroemia luquillensis)	Ternstroemia luquillensis	Dicot	Terrestrial	
Palo de Jazmin	Styrax portoricensis	Dicot	Terrestrial	
Palo de Nigua	Cornutia obovata	Dicot	Terrestrial	
Palo de Ramon	Banara vanderbiltii	Dicot	Terrestrial	
Palo de Rosa	Ottoschulzia rhodoxylon	Dicot	Terrestrial	
Pamakani (Viola chamissoniana ssp. chamissoniana)	Viola chamissoniana ssp. chamissoniana	Dicot	Terrestrial	
Panicgrass, Carter's (Panicum fauriei var.carte	ri)	Panicum faur	iei var. carteri	Monocot Terrestrial
Pauoa (Ctenitis squamigera)	Ctenitis squamigera	Ferns	Terrestrial	
Pawpaw, Beautiful	Deeringothamnus pulchellus	Dicot	Terrestrial	
Pawpaw, Four-petal	Asimina tetramera	Dicot	Terrestrial	
Pawpaw, Rugel's	Deeringothamnus rugelii	Dicot	Terrestrial	
Pelos del Diablo	Aristida portoricensis	Monocot	Terrestrial	
Penny-cress, Kneeland Prairie	Thlaspi californicum	Dicot	Terrestrial	
Pennyroyal, Todsen's	Hedeoma todsenii	Dicot	Terrestrial	
Pentachaeta, Lyon's	Pentachaeta Iyonii	Dicot	Terrestrial	
Pentachaeta, White-rayed	Pentachaeta bellidiflora	Dicot	Terrestrial	
Peperomia, Wheeler's	Peperomia wheeleri	Dicot	Terrestrial	
Phacelia, Clay	Phacelia argillacea	Dicot	Terrestrial	
Phacelia, Island	Phacelia insularis ssp. insularis	Dicot	Terrestrial	
Phlox, Texas Trailing	Phlox nivalis ssp. texensis	Dicot	Terrestrial	
Phlox, Yreka	Phlox hirsuta	Dicot	Terrestrial	* * * * * * * * * * * * * * * * * * *
Phyllostegia hirsuta (ncn)	Phyllostegia hirsuta	Dicot	Terrestrial	
Phyllostegia kaalaensis (ncn)	Phyllostegia kaalaensis	Dicot	Terrestrial	
Phyllostegia knudsenii (ncn)	Phyllostegia knudsenii	Dicot	Terrestrial	,
Phyllostegia mannii (ncn)	Phyllostegia mannii	Dicot	Terrestrial	
Phyllostegia mollis (ncn)	Phyllostegia mollis	Dicot	Terrestrial	
Phyllostegia parviflora (ncn)	Phyllostegia parviflora	Dicot	Terrestrial	
Phyllostegia velutina (ncn)	Phyllostegia velutina	Dicot	Terrestrial	
Phyllostegia waimeae (ncn)	Phyllostegia waimeae	Dicot	Terrestrial	

Phyllostegia warshaueri (ncn)	Phyllostegia warshaueri	Dicot	Terrestrial
Phyllostegia wawrana (ncn)	Phyllostegia wawrana	Dicot	Terrestrial
Pilo (Hedyotis mannii)	Hedyotis mannii	Dicot	Terrestrial
Pink, Swamp	Helonias bullata	Monocot	Terrestrial, Freshwater
Pinkroot, Gentian	Spigelia gentianoides	Dicot	Terrestrial
Piperia, Yadon's	Piperia yadonii	Monocot	Terrestrial
Pitaya, Davis' Green	Echinocereus viridiflorus var. davisii	Dicot	Terrestrial
Pitcher-plant, Alabama Canebrake	Sarracenia rubra alabamensis	Dicot	Freshwater, Terrestrial
Pitcher-plant, Green	Sarracenia oreophila	Dicot	Terrestrial, Freshwater
Pitcher-plant, Mountain Sweet	Sarracenia rubra ssp. jonesii	Dicot	Freshwater, Terrestrial
Platanthera holochila (ncn)	Platanthera holochila	Monocot	Terrestrial
Plum, Scrub	Prunus geniculata	Dicot	Terrestrial
Poa siphonoglossa (ncn)	Poa siphonoglossa	Monocot	Terrestrial
Po'e (Portulaca sclerocarpa)	Portulaca sclerocarpa	Dicot	Terrestrial
Pogonia, Small Whorled	Isotria medeoloides	Monocot	Terrestrial
Polygala, Lewton's	Polygala lewtonii	Dicot	Terrestrial
Polygala, Tiny	Polygala smallii	Dicot	Terrestrial
Polygonum, Scott's Valley	Polygonum hickmanii	Dicot	Terrestrial
Polystichum calderonense (ncn)	Polystichum calderonense	Ferns	Terrestrial
Pondberry	Lindera melissifolia	Dicot	Terrestrial
Popcornflower, Rough	Plagiobothrys hirtus	Dicot	Vernal pool
Popolo 'Aiakeakua (Solanum sandwicense)	Solanum sandwicense	Dicot	Terrestrial
Popolo Ku Mai (Solanum incompletum)	Solanum incompletum	Dicot	Terrestrial
Poppy, Sacramento Prickly	Argemone pleiacantha ssp. pinnatisecta	Dicot	Terrestrial
Poppy-mallow, Texas	Callirhoe scabriuscula	Dicot	Terrestrial
Potato-bean, Price's	Apios priceana	Dicot	Terrestrial
Potentilla, Hickman's	Potentilla hickmanii	Dicot	Terrestrial
Prickly-apple, Fragrant	Cereus eriophorus var. fragrans	Dicot	Terrestrial
Prickly-ash, St. Thomas	Zanthoxylum thomasianum	Dicot	Terrestrial
Primrose, Maguire	Primula maguirei	Dicot	Terrestrial

Pteris lidgatei (ncn)	Pteris lidgatei	Ferns	Terrestrial
Pua'ala (Brighamia rockii)	Brighamia rockii	Dicot	Terrestrial
Pussypaws, Mariposa	Calyptridium pulchellum	Dicot	Terrestrial
Pu'uka'a (Cyperus trachysanthos)	Cyperus trachysanthos	Monocot	Terrestrial
Quillwort, Black-spored	Isoetes melanospora	Ferns	Vernal pool
Quillwort, Louisiana	Isoetes louisianensis	Ferns	Freshwater, Terrestrial
Quillwort, Mat-forming	Isoetes tegetiformans	Ferns	Vernal pool
Rattleweed, Hairy	Baptisia arachnifera	Dicot	Terrestrial
Reed-mustard, Clay	Schoenocrambe argillacea	Dicot	Terrestrial
Reed-mustard, Shrubby	Schoenocrambe suffrutescens	Dicot	Terrestrial
Remya kauaiensis (ncn)	Remya kauaiensis	Dicot	Terrestrial
Remya montgomeryi (ncn)	Remya montgomeryi	Dicot	Terrestrial
Remya, Maui	Remya mauiensis	Dicot	Terrestrial
Rhododendron, Chapman	Rhododendron chapmanii	Dicot	Terrestrial
Ridge-cress (=Pepper-cress), Barneby	Lepidium barnebyanum	Dicot	Terrestrial
Rock-cress, Hoffmann's	Arabis hoffmannii	Dicot	Terrestrial
Rock-cress, Large (=Braun's)	Arabis perstellata E. L. Braun var. ampla Rollins	Dicot	Terrestrial
Rock-cress, McDonald's	Arabis mcdonaldiana	Dicot	Terrestrial
Rock-cress, Santa Cruz Island	Sibara filifolia	Dicot	Terrestrial
Rock-cress, Shale Barren	Arabis serotina	Dicot	Terrestrial
Rock-cress, Small	Arabis perstellata E. L. Braun var. perstellata Fernald	Dicot	Terrestrial
Rosemary, Cumberland	Conradina verticillata	Dicot	Terrestrial
Rosemary, Etonia	Conradina etonia	Dicot	Terrestrial
Rosemary, Short-leaved	Conradina brevifolia	Dicot	Terrestrial
Roseroot, Leedy's	Sedum integrifolium ssp. leedyi	Dicot	Terrestrial
Rush-rose, Island	Helianthemum greenei	Dicot	Terrestrial
Sandalwood, Lanai (='Iliahi)	Santalum freycinetianum var. lanaiense	Dicot	Terrestrial
Sandlace	Polygonella myriophylla	Dicot	Terrestrial
Sand-verbena, Large-fruited	Abronia macrocarpa	Dicot	Terrestrial

Conf/cycd	Dicot	Ferns	Monocot
-----------	-------	-------	---------

Sandwort, Bear Valley	Arenaria ursina	Dicot	Terrestrial	
Sandwort, Cumberland	Arenaria cumberlandensis	Dicot	Terrestrial	
Sandwort, Marsh	Arenaria paludicola	Dicot	Freshwater,	Terrestrial
Sanicula mariversa (ncn)	Sanicula mariversa	Dicot	Terrestrial	
Sanicula purpurea (ncn)	Sanicula purpurea	Dicot	Terrestrial	
Schiedea haleakalensis (ncn)	Schiedea haleakalensis	Dicot	Terrestrial	
Schiedea helleri (ncn)	Schiedea helleri	Dicot	Terrestrial	
Schiedea hookeri (ncn)	Schiedea hookeri	Dicot	Terrestrial	
Schiedea kaalae (ncn)	Schiedea kaalae	Dicot	Terrestrial	
Schiedea kauaiensis (ncn)	Schiedea kauaiensis	Dicot	Terrestrial	
Schiedea lydgatei (ncn)	Schiedea lydgatei	Dicot	Terrestrial	
Schiedea membranacea (ncn)	Schiedea membranacea	Dicot	Terrestrial	
Schiedea nuttallii (ncn)	Schiedea nuttallii	Dicot	Terrestrial	
Schiedea sarmentosa (ncn)	Schiedea sarmentosa	Dicot	Terrestrial	
Schiedea spergulina var. leiopoda (ncn)	Schiedea spergulina var. leiopoda	Dicot	Terrestrial	
Schiedea spergulina var. spergulina (ncn)	Schiedea spergulina var. spergulina	Dicot	Terrestrial	
Schiedea verticillata (ncn)	Schiedea verticillata	Dicot	Terrestrial	
Schiedea, Diamond Head (Schiedea adamar	ntis)	Schiedea ada	amantis Dicot	Terrestrial
Schoepfia arenaria (ncn)	Schoepfia arenaria	Dicot	Terrestrial	
Sea-blite, California	Suaeda californica	Dicot	Terrestrial	
Seagrass, Johnson's	Halophila johnsonii	Monocot	Coastal (ner	ritic), Saltwater
Sedge, Golden	Carex lutea	Monocot	Terrestrial	
Sedge, Navajo	Carex specuicola	Monocot	Terrestrial	
Sedge, White	Carex albida	Monocot	Freshwater,	Terrestrial
Silene alexandri (ncn)	Silene alexandri	Dicot	Terrestrial	
Silene hawaiiensis (ncn)	Silene hawaiiensis	Dicot	Terrestrial	
Silene lanceolata (ncn)	Silene lanceolata	Dicot	Terrestrial	
Silene perlmanii (ncn)	Silene perlmanii	Dicot	Terrestrial	
Silversword, Haleakala ('Ahinahina)	Argyroxiphium sandwicense ssp. macrocep	ohalum Dicot	Terrestrial	

Silversword, Ka'u (Argyroxiphium kauense)	Argyroxiphium kauense	Dicot	Terrestrial
Silversword, Mauna Kea ('Ahinahina)	Argyroxiphium sandwicense ssp. sandwicense	Dicot	Terrestrial
Skullcap, Large-flowered	Scutellaria montana	Dicot	Terrestrial
Snakeroot	Eryngium cuneifolium	Dicot	Terrestrial
Sneezeweed, Virginia	Helenium virginicum	Dicot	Vernal pool
Snowbells, Texas	Styrax texanus	Dicot	Terrestrial
Spermolepis hawaiiensis (ncn)	Spermolepis hawaiiensis	Dicot	Terrestrial
Spineflower, Ben Lomond	Chorizanthe pungens var. hartwegiana	Dicot	Terrestrial
Spineflower, Howell's	Chorizanthe howellii	Dicot	Terrestrial
Spineflower, Monterey	Chorizanthe pungens var. pungens	Dicot	Terrestrial
Spineflower, Orcutt's	Chorizanthe orcuttiana	Dicot	Terrestrial
Spineflower, Robust	Chorizanthe robusta var. robusta	Dicot	Terrestrial
Spineflower, Scotts Valley	Chorizanthe robusta var. hartwegii	Dicot	Terrestrial
Spineflower, Slender-horned	Dodecahema leptoceras	Dicot	Terrestrial
Spineflower, Sonoma	Chorizanthe valida	Dicot	Terrestrial
Spiraea, Virginia	Spiraea virginiana	Dicot	Terrestrial
Spurge, Deltoid	Chamaesyce deltoidea ssp. deltoidea	Dicot	Terrestrial
Spurge, Garber's	Chamaesyce garberi	Dicot	Terrestrial
Spurge, Hoover's	Chamaesyce hooveri	Dicot	Vernal pool
Spurge, Telephus	Euphorbia telephioides	Dicot	Terrestrial
Stenogyne angustifolia (ncn)	Stenogyne angustifolia var. angustifolia	Dicot	Terrestrial
Stenogyne bifida (ncn)	Stenogyne bifida	Dicot	Terrestrial
Stenogyne campanulata (ncn)	Stenogyne campanulata	Dicot	Terrestrial
Stenogyne kanehoana (ncn)	Stenogyne kanehoana	Dicot	Terrestrial
Stickseed, Showy	Hackelia venusta	Dicot	Terrestrial
Stickyseed, Baker's	Blennosperma bakeri	Dicot	Vernal pool
Stonecrop, Lake County	Parvisedum leiocarpum	Dicot	Vernal pool
Sumac, Michaux's	Rhus michauxii	Dicot	Terrestrial
Sunflower, Pecos	Helianthus paradoxus	Dicot	Terrestrial, Freshwater
Sunflower, San Mateo Woolly	Eriophyllum latilobum	Dicot	Terrestrial

Sunflower, Schweinitz's	Helianthus schweinitzii	Dicot	Terrestrial
Sunray, Ash Meadows	Enceliopsis nudicaulis var. corrugata	Dicot	Terrestrial
Taraxacum, California	Taraxacum californicum	Dicot	Terrestrial
Tarplant, Gaviota	Delnandra increscens ssp. villosa	Dicot	Terrestrial
Tarplant, Otay	Deinandra (=Hemizonia) conjugens	Dicot	Terrestrial
Tarplant, Santa Cruz	Holocarpha macradenia	Dicot	Terrestrial
Tectaria Estremerana	Tectaria estremerana	Ferns	Terrestrial
Ternstroemia subsessilis (ncn)	Ternstroemia subsessilis	Dicot	Terrestrial
Tetramolopium arenarium (ncn)	Tetramolopium arenarium	Dicot	Terrestrial
Tetramolopium capillare (ncn)	Tetramolopium capillare	Dicot	Terrestrial
Tetramolopium filiforme (ncn)	Tetramolopium filiforme	Dicot	Terrestrial
Tetramolopium lepidotum ssp. lepidotum (ncn)	Tetramolopium lepidotum ssp. lepidotum	Dicot	Terrestrial
Tetramolopium remyi (ncn)	Tetramolopium remyi	Dicot	Terrestrial
Tetramolopium rockii (ncn)	Tetramolopium rockii	Dicot	Coastal (neritic), Terrestrial
Thelypody, Howell's Spectacular	Thelypodium howellii spectabilis	Dicot	Terrestrial
Thistle, Chorro creek Bog	Cirsium fontinale var. obispoense	Dicot	Terrestrial, Freshwater
Thistle, Fountain	Cirsium fontinale var. fontinale	Dicot	Terrestrial
Thistle, La Graciosa	Cirsium loncholepis	Dicot	Coastal (neritic), Freshwater, Saltwater, Brackish
Thistle, Pitcher's	Cirsium pitcheri	Dicot	Terrestrial
Thistle, Sacramento Mountains	Cirsium vinaceum	Dicot	Terrestrial
Thistle, Suisun	Cirsium hydrophilum var. hydrophilum	Dicot	Brackish, Terrestrial
Thornmint, San Diego	Acanthomintha ilicifolia	Dicot	Terrestrial
Thornmint, San Mateo	Acanthomintha obovata ssp. duttonii	Dicot	Terrestrial
Torreya, Florida	Torreya taxifolia	Conf/cycds	Terrestrial
Tree Fern, Elfin	Cyathea dryopteroides	Ferns	Terrestrial
Trematolobelia singularis (ncn)	Trematolobelia singularis	Dicot	Terrestrial
Trillium, Persistent	Trillium persistens	Monocot	Terrestrial
Trillium, Relict	Trillium reliquum	Monocot	Terrestrial
Tuctoria, Green's	Tuctoria greenei	Dicot	Vernal pool
Uhiuhi (Caesalpinia kavaiensis)	Caesalpinia kavaiense	Dicot	Terrestrial

9/27/2007 9:54:52 AM Ver. 2.10.3

Ulihi (Phyllostegia glabra var. lanaiensis)	Phyllostegia glabra var. lanaiensis	Dicot	Terrestrial
Umbel, Huachuca Water	Lilaeopsis schaffneriana var. recurva	Dicot	Terrestrial, Freshwater
Uvillo	Eugenia haematocarpa	Dicot	Terrestrial
Vernonia Proctorii (ncn)	Vernonia proctorii	Dicot	Terrestrial
Vervain, California	Verbena californica	Dicot	Terrestrial
Vetch, Hawaiian (Vicia menziesii)	Vicia menziesii	Dicot	Terrestrial
Vigna o-wahuensis (ncn)	Vigna o-wahuensis	Dicot	Terrestrial
Viola helenae (ncn)	Viola helenae	Dicot	Terrestrial
Viola lanaiensis (ncn)	Viola lanaiensis	Dicot	Terrestrial
Viola oahuensis (ncn)	Viola oahuensis	Dicot	Terrestrial
Wahane (Pritchardia aylmer-robinsonii)	Pritchardia aylmer-robinsonii	Monocot	Terrestrial
Wahine Noho Kula (Isodendrion pyrifolium)	Isodendrion pyrifolium	Dicot	Terrestrial
Wallflower, Ben Lomond	Erysimum teretifolium	Dicot	Terrestrial
Wallflower, Contra Costa	Erysimum capitatum var. angustatum	Dicot	Terrestrial
Wallflower, Menzie's	Erysimum menziesii	Dicot	Terrestrial
Walnut, Nogal	Juglans jamaicensis	Dicot	Terrestrial
Warea, Wide-leaf	Warea amplexifolia	Dicot	Terrestrial
Watercress, Gambel's	Rorippa gambellii	Dicot	Terrestrial, Brackish, Freshwater
Water-plantain, Kral's	Sagittaria secundifolia	Monocot	Freshwater
Water-willow, Cooley's	Justicia cooleyi	Dicot	Terrestrial
Wawae'lole (Phlegmariurus (=Huperzia) mann	ii) Huperzia mannii	Ferns	Terrestrial
Wawae'lole (Phlegmariurus (=Lycopodium) nutans)	Lycopodium (=Phlegmariurus) nutans	Ferns	Terrestrial
Whitlow-wort, Papery	Paronychia chartacea	Dicot	Terrestrial
Wild-buckwheat, Clay-loving	Eriogonum pelinophilum	Dicot	Terrestrial
Wild-buckwheat, Gypsum	Eriogonum gypsophilum	Dicot	Terrestrial
Wild-rice, Texas	Zizania texana	Monocot	Freshwater
Wings, Pigeon	Clitoria fragrans	Dicot	Terrestrial
Wireweed	Polygonella basiramia	Dicot	Terrestrial
Woodland-star, San Clemente Island	Lithophragma maximum	Dicot	Terrestrial

Conf/cycd Dicot Ferns Monocot

Woolly-star, Santa Ana River	Eriastrum densifolium ssp. sanctorum	Dicot	Terrestrial
Woolly-threads, San Joaquin	Monolopia (=Lembertia) congdonii	Dicot	Terrestrial
Xylosma crenatum (ncn)	Xylosma crenatum	Dicot	Terrestrial
Yerba Santa, Lompoc	Eriodictyon capitatum	Dicot .	Terrestrial
Ziziphus, Florida	Ziziphus celata	Dicot	Terrestrial

No species were selected for exclusion.

Dispersed species included in report.